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Introduction

Biochar has a carbon matrix 
structured with a high degree of 
porosity and extensive surface area, 
permitting it to act as a sorbent and 
play a key role in controlling pollutants 
in the environment.1,2 Biochar can 
help farmers increase farm land 
productivity, concurrently lessening 
the environmental footprint of farming 
practices by substituting for chemical 
pesticides, herbicides and fertilisers.3

Biochars derived from animal wastes 
such as diary manure and broiler litter 
can immobilize cadmium (Cd), copper 
(Cu), lead (Pb) and nickel (Ni).4,5 

The immobilization of Cd, Cu, Pb, 
and Ni in water and soil by biochar 

derived from broiler litter has been 
attributed to pi electrons (C=C) and 
cation exchange.5 High Pb affinities by 
biochar derived from dairy manure are 
mostly attributable to precipitation of 
carbonate minerals and Pb phosphate.4 
The high sorption ability of biochar 
can be attributed to three processes: 
electrostatic interactions between 
a carbon surface that is negatively 
charged and metal cations; ionic 
exchange among metal cations and 
ionizable protons at the acidic carbon 
surface; and sorptive interaction 
concerning delocalized carbon 
electrons.6 In the sorption process, 
oxidation-reduction is possible. For 
example, removal of chromium (Cr) 
(VI) by biochar derived from sugar 
beet tailings is a result of Cr (VI) to Cr 
(III) ion reduction and its subsequent 

complexation with the biochar.7

Most studies have been conducted on 
the single metal sorption onto biochar, 
but potentially toxic metals such as Cu, 
Cd, Pb, and zinc (Zn) often coexist in 
polluted water.8 Their interactions and 
associations with other environmental 
components and with one another are 
known to influence their mobility.9 
Hence, it is necessary to understand 
the mechanisms involved and develop 
an effective adsorbent that can be 
immobilized or remove toxic metals 
from multi-metal polluted water and 
soils. 

Furthermore, biomass thermal 
properties or process conditions 
such as atmosphere, heating rate, pre 
and post treatment, residence time, 
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reactor temperature, reactor type, and 
pressure, among others, also influence 
biochar properties.10 Based on these 
factors, biochar properties can differ 
to a larger extent in terms of their 
adsorption capacity surface area, ash 
content, cation exchange capacity, 
elemental composition, nutrient 
content, pore size, stability, toxicity, 
and surface properties (chemical and 
physical) among others.10 Pore-size 
distribution, porosity, and biochar 
total surface area have superfluous 
importance for a range of special 
effects on adsorption capacity, soil 
properties and soil microorganisms.10 
According to the European Biochar 
Certificate, physico-chemical 
properties such as biochar ash content, 
moisture content, yield, pH value, 
bulk density and total organic carbon 
content have the greatest effect on 
biochar metal ion retention.11 

The functional groups present on the 
biochar surface impart adsorption 
potential for toxic constituents such 
as manganese (Mn) and aluminum 
(Al) in acidic soils, and Ni, Cu, Cd, 
lead (Pb), and arsenic (As) in polluted 
soils.12,13 Hence, the possible removal 
or reduction of toxic metals from 
pollution sources can be achieved 
using biochar. However, properties of 
biochar are highly variable, and quality 
is also affected by feed stock materials, 
reactor types and pyrolysis conditions. 
It is necessary to understand the 
mechanisms involved to develop an 
effective adsorbent that can immobilize 
or remove toxic metals from multi-
metal polluted water and soil. This 
review presents an update on biochar 
properties and remediation of toxic 
metal polluted water and soil in both 
small-scale and laboratory experiments.

Methods

A search strategy protocol was 
established by the authors prior to 
conducting the review and refined 

with the help of previous reviews. 
The Preferred Reporting Items 
for Systematic Reviews and Meta-
Analyses (PRISMA) 2009 checklist 
was also used as guide in writing this 
review article.14 A thorough search of 
the literature was conducted to collect 
suitable and credible information 
from reliable sources, including 
international journals that are 
reputable, useful reports and books. 
The scientific papers were appraised 
through a 2-stage process. In the first 
stage, the title and abstract of the 
papers were searched to determine 
relevance based on the objective of this 
review. For the second stage, the full 
body of the articles that were deemed 
potentially important were reviewed. 
An initial 305 peer reviewed articles 
were collected, and a final 164 were 
selected (dated from 1998 to 2019) and 
synthesized based on the relatedness 
to the topic. Google search was used to 
check for the latest related publications 
on the topic. 

Search design and data collection 

Systematic searches were performed 
for research articles, books, reports 
and conference papers and abstracts 
in Science Direct, Springer, Elsevier, 
and Google Scholar databases on the 
25th of June 2019 without limitations 
on publication year. The keywords 
“biochar”, “characteristics of biochars”, 
“sorption parameters”, “biochar 
adsorption mechanism”, “analysis of 
adsorption mechanism”, “mechanism 
of interaction amongst toxic metals 
and biochar”, “metal polluted water 
remediation using biochar”, “biochar 

incorporated into soil changes its 
physical characteristics”, “adsorption 
kinetics and adsorption isotherms”, 
“potential risk of biochar application 
in the environment”, and “stability and 
aging effect of biochar” were searched 
to identify relevant articles.

The studies included in this systematic 
review met the following criteria: peer-
reviewed research articles, reviews, 
books, primary reports of research 
findings on original data, and on the 
topic of biochar and its properties as 
outlined above. Only articles written in 
the English language were considered. 
Exclusion criteria included: no original 
data or abstract only; covering only 
the general properties of biochar, 
benefits of biochar, role of biochar’s 
potential contribution to climate 
change mitigation, and bioenergy, 
full text not included or in languages 
other than English. The subject 
matter relevance filtering was done 
based on title and abstract screening, 
followed by screening of the full text. 
Full text screening was carried out in 
instances where title and abstract were 
insufficient to determine the relevancy 
of the article to the present review. 
Only peer-reviewed research articles, 
reviews, books and reports were 
included in the review. The search 
strategy is illustrated in Figure 1. 

Study quality 

Studies sourced from the Science 
Direct, Springer and Elsevier databases 
were taken to be of high quality. Most 
of the articles or reports that were 
read were excluded, and the most 
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common reasons for exclusion were 
study already included, review/not 
original data, publication type, lack of 
relevance, older study, experiment not 
properly conducted or article poorly 
written (Figure 1). Overall, we judged 
journal-published articles to be of 
higher quality than other information 
sources. Articles from other 
information sources often did not 
adequately describe their experimental 

design, had inadequate experimental 
samples, sampling methods, quality 
control during collection of data, had 
findings that were largely speculation 
and lacked firm conclusions, or had 
poor data analysis. 

Results

A total of 305 articles were collected, 
and from that total, 164 articles from 

high-, low- and middle-income 
countries were synthesized based on 
the relatedness to the topic (Table 1). 
The information extracted from the 
studies included author names, year 
of publication, study design, studied 
biochar, its properties and remediation 
of toxic metals, polluted water or soil, 
and observed response. In the initial 
database search, 305 articles were 
considered eligible for extraction of 
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Figure 1 — PRISMA flow diagram indicating the number of articles, books and reports  
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data, as outlined in the PRISMA flow 
chart (Figure 1). A final total of 164 
studies were identified through the 
systematic search and screening. These 
studies described or are closely related 
to the subject matter as presented in 
the PRISMA flow chart (Figure 1). 
This included research articles from 
Science Direct, Springer, Elsevier, 
Google Scholar databases and other 
information sources. The inclusion 
criteria identified 164 articles, out of 
which 89.02% were research articles, 
5.49% were review articles, 3.05% 
were books and 1.37% were reports 
determined to be relevant to the 

present review after title, abstract and 
full text screening.

Data extraction and analysis 

We extracted the following data: 
type of study, author, project 
year, experimental design, year 
of publication, methods, type of 
experiment and publisher for all 
included studies. Main outcomes were 
extracted and categorized. 

Biochar characteristics

The pH of biochars could be lowered 

due to production of phenolic 
substances and organic acids caused by 
decomposition in hemicelluloses and 
cellulose.15 Raw almond shell consists 
of 7.52% extractives, 20.34% lignin, 
31.23% hemicellulose, and 38.62% 
cellulose.16 

Mineral composition such as calcium 
(Ca), potassium (K), magnesium 
(Mg) and phosphorus (P) in biochar 
and biomass is also responsible for 
adsorption of metal from aqueous 
solutions.17 Mineral constituents 
contained in biochar derived from 
dairy manure are reported to play an 

Table 1 — Included studies by category 
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essential role in biochar sorption of 
multi-metals.18

Volatile matter and biochar yield are 
reduced with an upsurge in pyrolysis 
temperature and heating time owing 
to the destruction of hemicellulose 
and cellulose moieties.19 The amount 
of volatile compounds escaping from 
inside the particle progressively 
increases during the process of 
pyrolysis once the final temperature 
increases.16 High ash content of 
biochar makes it suitable for metal 
ions and phosphate adsorption.20,21 In 
addition, more ash will weaken the 
biochar’s capacity of adsorption toward 
organic contaminants by masking the 
active sites of adsorption.22

Scanning electron microscopy is a 
microscopic technique for defining 
the image macroporosity and physical 
morphology of solid matter.23 
Microporous structure may play 
an important role in contaminant 
adsorption and water-holding capacity 
in solution and soil systems.23,24 

Biochars generally have strong 
aromaticity, larger surface areas, and 
higher carbon contents, which favors 
the removal of organic contaminants.25 
High porosity, large specific surface 
area, and rich oxygen functional 
groups on biochar deliver large 
quantities of active binding sites for 
organic pollutants via n-π conjugate 
action, hydrogen bond interaction, 
ion exchange process, electrostatic 
adsorption, or other interactions.25 

Some biochar physical and chemical 
properties including surface area, 
pH of materials, porosity, mineral 
contents, surface charge, and 
functional groups, play a vital role 
in explaining the sorption process of 
metals.26 Surface potential, surface 
area, and pH are significant factors 
regulating their applications in the 
environment.27 

Biochar has many oxygen-containing 
groups on its surface, and ions could 
effortlessly outcompete molecules 
of water for these functional groups 
for the formation of robust surface 
complexes.28 Metal ion rapid sorption 
is attributable to the sorbent highly 
porous structure which offers ready 
access for great surface area adsorption 
for the metal ions to the active binding 
sites.29

The adsorption efficiency of biochar 
tends to be influenced by properties 
of biochar, like competitive anions, 
adsorbent dosage, deashing treatment, 
temperature and pH.30 At low pH, 
biochar functional groups present are 
positively charged.30,31 

Biochar has high adsorption capacity 
for metallic pollutants owing to surface 
heterogeneity.32 In addition, many 
biochars have a high surface area with 
a network of well distributed pores, 
including macropores (> 50 nm), 
mesopores (250 nm), and micropores 
(< 2 nm).33 Biochars with high pore 
volumes and high surface area have 
great metal ion affinity as ions can be 
sorbed physically onto the char surface 
and retained inside the pores.34 

Wastewater’s multiple components 
cause interactive effects largely 
dependent on numerous factors 
such as metal concentration, pH, 
quantity of co-cations competing 
for active binding sites, equilibrium 
concentration of ions, and quantity 
and nature of biomass adsorbent.35 
The preference of an adsorbent for 
metal ions in multi-metal systems 
is affected by factors that are linked 
to the solution’s physico-chemical 
properties such as adsorbent surface 
properties, temperature, pH and 
toxic metals properties such as ionic 
radius, electronic configuration and 
electronegativity.36

Biochar physico-chemical properties 

(cation exchange capacity, element 
contents, surface areas, pH and 
porous structure) are dependent on 
the temperature of pyrolysis.37 During 
polymerization and the dewatering 
process, the cellulose and lignin in 
agricultural residue biochar decay 
into smaller molecules, and oxygen 
carbon ratio and hydrogen carbon 
ratio decrease.38 Biochar aromatic 
structure is used as a π-electron 
acceptor or donor which form -π 
bond with contaminants, further 
impacting biochar adsorption effects 
on pollutants.39 When the temperature 
of pyrolysis rises, the ester and fat 
alkyl group are cracked, exposing 
the aromatic lignin nuclear to the 
surface, creating a larger surface 
area.40 Biochar produced under 
high temperature pyrolysis will have 
strong aromaticity and its toxic metal 
adsorption is mainly related with the 
π-bond and specific surface area.38 
However, more oxygenic functional 
groups are found in biochar produced 
under low pyrolysis temperature and 
its toxic metals adsorption is primarily 
accredited to complexation with the 
functional groups.38

The temperature of biochar production 
is a key determining factor of its 
surface chemistry and properties.41 
The quantity of either carboxyl 
groups or mineral in biochar can 
differ dependent on the original 
biomass composition and as a 
function of the pyrolysis conditions 
employed.25 Biochar production is 
a complicated process of a physico-
chemical nature which is affected 
by the natural inorganic substances 
and the mechanisms of pyrolysis 
and interactions of the foremost 
components like lignin, hemicellulose 
and cellulose in biomass.42 Large 
quantities of oxygen and carbon in 
biomass lead to higher biochar yield 
and functional groups formation such 
as C-OH, -C-O-R and –COOH.21,22,43 
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Sorption parameters 

The pH of adsorption media is 
linked to the sorption of metal—
mechanism of the surfaces of the 
water, revealing the physico-chemical 
interaction nature of the metal ions 
in solution and sorption nature of 
the binding sites.44 The pH influences 
the equilibrium uptake of metal 
ions in aqueous solution due to the 
counter reaction of hydrogen proton 
competition in addition to the sorbent 
chemistry of the active sites.45 One of 
the main variables affecting sorption 
process is pH, as it not only influences 
speciation of the toxic metal ions, 
but also the ionization degree of the 
adsorbate and surface charge of the 
sorbent during the reaction.30,46,47 
Reduction in efficiency of adsorption 
at pH greater than 6 is a result of 
the soluble hydroxylated complexes 
formation of the ions and their 
competition with the binding sites.48 

Higher biochar pH may be related 
to higher concentrations of calcium 
carbonate, alkali metals and alkaline 
salts.49 Biochar produced from high 
pyrolysis temperatures will be alkaline 
in nature and can promote toxic 
metals adsorption and formation of 
metal hydroxide precipitation and 
also improve acidic soil.50 Naturally, 
some mine areas have near neutral 
pH, which is anticipated to result in 
low mobility of metals.51 Biochar has 
high removal abilities for toxic metals 
in water/soil owing to its exceptional 
surface chemistry such as high 
aromaticity, high surface area, high 
alkalinity and different functional 
groups.52 

Effect of initial pH and equilibrium 
temperature 

Reaction temperature is a significant 
factor as it influences process and 
reaction rate.53 Generally, the reaction 
situations such as cation net release 

concentration, Cd2+ removal capacity 
and solution pH after equilibrium 
are similar at different temperatures, 
without notable differences.53 When 
equilibrium temperature does not 
considerably affect the adsorption 
process, it suggests that the adsorption 
is of a chemical nature rather than 
physical.54 Solution pH is considered 
the most significant factor of metal 
adsorption.55 Adsorption performance 
can be affected by initial pH in 
the following ways: affinity and 
electrostatic repulsion between 
adsorbate and adsorbent; the process 
of ion exchange between adsorbate and 
adsorbent; and metal ion distribution 
such as insoluble or soluble and anion 
or cation.54-58 

Dosage effect of adsorbent 

The increase in adsorbent specific 
surface area leads to increases of 
adsorption sites.59 In an adsorbent-
adsorbate equilibrium system, the 
adsorbent dose is an important factor 
influencing removal effectiveness.2,60 
Reduction in the amount of adsorption 
may be attributed to aggregation 
or overlapping of adsorption sites 
resulting in declines in adsorbent total 
surface area.15 Increases in the amount 
of biochar decreased adsorption 
efficiencies.2 

Effect of contact time and initial 
metal ion concentration on 
temperature dependent adsorption

Adsorption rate is a function of 
the initial concentration of a toxic 
metal, which makes it a significant 
factor to be examined for sorption 
effectiveness.61 The temperature of the 
medium is also an effective factor in 
adsorption efficiency.62 

Biochar adsorption mechanism

Biochar physico-chemical properties 
vary with the type of raw material, 

means of pyrolysis, feed stock particle 
size, time of pyrolysis, modification 
conditions, and temperature.53,63,64 
Although biochar structure is 
affected by several factors, generally, 
biochar has copious functional 
groups on its surface, a developed 
pore structure, high specific 
surface area and stable molecular 
structure, with good performance of 
adsorption, which favors adsorption 
of contaminants in wastewater.1,65 

The interactions between biochar 
and toxic metals involve precipitation 
and adsorption.50,66,67 Weak binding 
between toxic metals and biochar 
results in easy separation and 
desorption.68

In biochar production and utilization, 
many variables including feedstock 
types and pyrolysis conditions may 
affect its environmental management 
efficacy.69 Biochar properties differ 
widely because of the different 
pyrolysis conditions and raw 
materials, and it is important to 
optimize systems of production to 
yield specifically designed biochar for 
remediation work.70 The specific type 
of pollutant also affects the ability 
of biochar adsorption.71 The feed 
stock types and pyrolysis conditions 
significantly change the physico-
chemical characteristics such as 
polarity, atomic ratio, surface area, 
element composition, pH, and thus 
the overall surface characteristic of the 
biochar.50,72-74 

Organic structure

Biochar organic structure is composed 
of two layers such as aromatic 
structures and stacked graphene layers 
which are interspersed with a graphene 
layer, armoring the biochar with the 
rich pore structures and large specific 
surface area characteristics.75 Rich 
pore structures support the adsorption 
of organic matter with identical 
molecular weight, and great specific 
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surface areas improve the physical 
capacity of biochar for adsorption.53 
For example, bamboo biochar has 
a nearly 90% mesoporous structure 
which aids adsorption of quinolone 
antibiotics.76 

Surface functional groups 

Zhang et al. showed that when 
pyrolysis temperature is increased 
to 500ºC or higher, CH (carbon 
hydrogen) and OH (hydroxyl) on 
the biochar surface derived from 
sludge is destroyed.77 The surface of 
biochar derived from chicken manure 
improved by ammonia/nitric acid can 
form fresh functional amino groups, 
which could improve dimethyl sulfide 
sorption performance.78 Biochars 
derived at 400°C are highly polar in 
aromatic π-systems and are rich in 
electron-drawing functional groups.79 

Surface electrical properties 

Magnesium salt was used to modify 
corncob biochar to have positive 
surface electricity, which enhanced 
adsorption phosphate efficiency.80

Mineral ingredients 

Inyang et al. found that Pb (II) 
reacted with dihydrogen phosphate, 
bicarbonate, and carbonate ions on the 
biochar surface, enabling Pb carbonate 
hydroxide, Pb (II) carbonate, and 
pyromorphite (Pb5(PO4)3X{S}, 
where X can be bromide, chloride, 
fluoride, or hydroxide) precipitation.81 
Generally, organic contaminant 
adsorption by biochar occurs mostly 
through the mixture of functional 
group electrostatic attraction and pore 
immobilization.82 

Analysis of adsorption mechanism

A study found that with greater 
efficiency of removal of biochar, after 
equilibrium, the pH and concentration 

of released Ca2+ are higher, which 
is linked to exchangeable cations of 
alkaline earth metals that are divalent 
and soluble alkaline substances.53 Gurgel 
and Gil stated that pH value influences 
adsorbent surface charge, adsorbate 
form and ionization state.83 Adsorption 
increased with increasing pH solution 
as more metal binding sites could 
be uncovered with negative charges, 
henceforth ensuing ion attraction 
with positive charges and adsorption 
occurring on the surface of the cell.84 
On the surface of biochar derived from 
peanut husk, there exist diverse active 
functional groups (OH and COOH).50,85 
At low pH, protons are present and 
high in concentration in the system 
of reaction which protonates on the 
surface of the adsorbent functional 
groups and result in electrostatic 
repulsion amongst the positively 
charged ion and protonated functional 
groups.86,87 Another adsorption 
mechanism of metal ions might depend 
on the physical characteristics of biochar 
such as surface area and porosity.87,88 
Pyrolysis temperature impacts sorption 
affinities to toxic metals and structural 
characteristics of biochars.33,89

Mechanism of interaction amongst 
toxic metals and biochar 

Key biochar properties such as 
carbon, ash contents, surface area and 
pH can be affected by way of post-
treatments and thus heighten the 
ability of biochar to immobilize toxic 
metals.90 Adsorption of toxic metals on 
biochar surface has been established 
on multiple occasions using scanning 
electron microscopy.91,92 The sorption 
was attributed to toxic metals 
complexation with diverse functional 
groups existing in the biochar, on 
account of the toxic metals exchange 
with cations connected with biochar 
such as Mg+2 and Ca+2, sulfur, K+ and 
sodium ion, or as a result of adsorption 
that is physical in nature.92,93 Moreover, 
oxygen functional groups are noted 

to stabilize metal ions in the surface 
of biochar mostly for softer acids like 
Cu2+ and Pb2+.93

Furthermore, Mendez et al. noted 
that sorption of Cu+2 was associated 
with the higher oxygenated 
functional groups in addition to 
elevated superficial density charge, 
high average pore diameter and 
Mg+2 and Ca+2 biochar exchange 
content.94 Other compounds existing 
in the ash, for instance carbonates, 
sulphates or phosphates can also help 
to stabilize toxic metals by means 
of precipitation.4,95 The pH value 
of biochar increases with pyrolysis 
temperature, which has been linked 
with a higher percentage of ash.96,97 
The mobility of toxic metals can also 
be lessened by biochar by means 
of changing their redox state.98 For 
instance, the addition of biochar 
can cause the transformation of 
Cr+6 to Cr+3, making it less mobile.98 
Although the contribution of 
diverse mechanisms to toxic metal 
immobilization by different biochars 
remain unknown, it typically has an 
effect on pH.99

Metal polluted water remediation 
using biochar

A study compared eight biochars 
produced from alfalfa stems, broiler 
litter, corn stover, corn cobs, guayule 
shrubs, guayule bagasse, soybean 
straw, and switch grass activated for 
their capability to adsorb Zn2+, Ni2+, 
Cu2+ and Cd2+, from water.100 Copper 
ions have a stronger affinity for 
biochar compared to other divalent 
metals, due to the surface that forms 
complexes amongst Cu2+ and OH and 
COOH functional groups onto the 
biochar.101 A study on the efficiencies 
of removal of Pb ion reported 85% 
removal by chaff, 86% removal by 
sun flower husks, 98% removal by tea 
waste, 90% removal by rice husks and 
100% removal by sesame husks.102 
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Dairy manure biochar and rice husk 
biochar were used for concurrent 
removal of Cd, Cu, Pb, and Zn from 
aqueous solution. The study showed 
biochar produced from dairy manure 
was more effective in the removal 
of the four metals than rice husk 
biochar.103 This was attributable to 
all metals competing for only the 
ionized phenolic-O groups in the rice 
husk biochar whereas metal removal 
by dairy manure biochar resulted 
from both complexation with ionized 
hydroxyl-O group and phosphate and/
carbonate precipitation with metals, 
resulting in lower competition.103

The adsorption of multi-metals 
onto biochar can be attractive and 
economical for remediation of 
metal-contaminated natural acidic 
solutions like acid mine water.104 
A single-pollutant systems study 
reported that biochars (bamboo, 
hickory wood, sugarcane bagasse 
and peanut hull-derived) adsorbed 
4% to 16% of Cu (II), 11% to 18% 
efficiency for Cd (II) and 18% to 
35% for Pb (II). It concluded that Cd 
and Pb adsorption was influenced 
by biochar pore structure, while 
removal of Cu was influenced by the 
biochar surface functional groups.105 
Almost 100% removal of Cd2+ was 
achieved using biochar produced 
from municipal sewage sludge at 
500°C to 900°C, especially the biochar 
produced at 800°C and 900°C in the 
initial concentration that ranged from 
0 to 50 mg/l of Cd2+.106 The capacity 
and mechanism of Cd of adsorption 
on orange peel biochar produced at 
various pyrolysis temperatures and 
2 and 6 hours heating times were 
studied. The study showed about 
80.6% to 96.9% removal of Cd2+ 
occurred within the first minute of 
contact in the solution.107 

Cadmium removal efficiency by 
biochars (three) were greater than 
90% at an optimum pH value of 5, 

with the highest stretch to 99.24%.108 
Sunflower seed husk biochar showed 
a strong ability to remove most Cu2+, 
while about 74.15 to 81.00% of Cu2+ 
was removed by sunflower seed 
husk feedstock within 5 minutes of 
the batch experiment in the tested 
temperature range. However, a gradual 
increase of Cu2+ removal of 85.74% 
to 89.40% by sunflower seed husk 
feedstock was observed after 96 hours 
of reaction.109 The removal efficiencies 
of Cd using different materials from 
aqueous solution showed that among 
the different materials, mushroom 
waste recorded the lowest efficiency 
of 38.7% for Cd, 86.6% for soybean 
straw and peanut husk biochar showed 
significantly higher removal efficiency 
of 99.2%.110 Percentage removal of 
Pb (II) was up to 99% in 40 minutes 
from aqueous solution using biochar 
produced from bamboo and calcium 
sulphate.111 A study found that biochar 
was able to remove 96.88% Cd2+, 
96.23% Zn2+, 95.96% Co2+, 93.38% 
Cu2+ and 88.79% Pb2+ ions in acidic 
solutions.112 Removal efficiency of Cd, 
mercury (Hg) and Pb by groundnut 
and shea nut shell biochars in a mono-
component system was almost 100%, 
over 99.60% for Cd and 100% for Hg 
in a binary system, and Cd versus Pb, 
and Hg versus Pb were almost 100%, 
and in the ternary system the removal 
was greater than 97.50% in the 
aqueous phase.113 Higher adsorption 
capacities of Pb2+ and Cd2+ of dairy 
manure biochar have been reported to 
be 68.08 mg/g by Cd and 175.53 mg/g 
by Pb.114 

Biochar incorporated into soil 
changes its physical characteristics 

Biochar incorporated into soil changes 
its physical characteristics, for instance 
density, structure and pore size 
distribution, with implications for soil 
aeration, soil workability and water 
holding capacity.115, 116 Application of 
biochar into soil showed an upsurge 

in the general net surface area of the 
soil and subsequently, may improve 
nutrient and retention of soil water 
and soil aeration predominantly in 
soils with fine texture.117-119 The alkaline 
properties of biochars increased the 
pH of solution, which encouraged 
metal immobilization through a 
decrease in metal solubility and metal 
precipitation.120

The addition of biochar did not 
result in the total toxic metal content 
decrease in soil, nevertheless, addition 
of biochar reduced the mobility of Pb, 
Cr and Cd and the bioavailability of 
Zn, Pb and Cd. Park et al. reported 
the effect of two biochars in a toxic 
metal spiked soil and a strongly 
contaminated natural soil.121 Uchimiya 
et al. reported that biochar derived 
from manures with a low or high 
ash proportion or phosphorus 
were less effective in toxic metal 
immobilization.122 

Beesley et al. found that after the 
addition of biochar, As can upsurge in 
soil pore water, but is reduced during 
transfer to plants.123 Karami et al. 
reported that biochar incorporation 
into mine soil contaminated with 
Cu and Pb showed that addition of 
biochar reduced pore water levels of 
Pb to half of their concentrations in 
the mine soil.124 Jiang et al. established 
that fractions of acid soluble Cu2+ 
and Pb2+ diminished by 19.7% to 
100%, and 18.8% to 77%, respectively, 
dependent on the amount of biochar.125 
Performing acid or additional oxidant 
post-treatment increases oxygen-
containing surface functional groups 
(hydroxyl, carbonyl and carboxyl) 
and this plays an important role in 
sorption of metal ions on biochar.126 

Treatments comprised of earthworms 
and biochar did not result in plant 
availability or higher mobility of 
metal.127 As a significance of metal 
immobilization, biochars can lessen 
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polluted soils phytotoxicity, resulting 
in increases in root length and 
germinated seeds percentage.128 Cui 
et al. established that Cd uptake was 
reduced in cropped wheat and paddy 
fields in soil.129 Zheng et al. reported 
Zn, Pb and Cd to have been reduced 
on rice shoots, especially when using 
biochar derived from straw.130 Biochar 
can be used to recover polluted areas 
and brownfields as it improves growth 
of trees, crops and other flora and 
increases soil fertility.3 Biochar can 
also reduce the quantity of toxic metals 
and other contaminants in soil and 
averts them from delivery into water 
bodies.131

Biochar presence in the mixture of soil 
has a significant effect on the system’s 
physical nature, depth, porosity, 
texture, consistency, and structure 
during the course of changing pore 
size distribution, packing, particle 
size distribution, surface area and 
bulk density.132 The penetration depth 
and availability of air and water into 
the root zone is mostly determined 
by the physical compositions of soil 
horizons.133

The biochar surface can contain 
numerous chemically active groups, 
such as ketones, COOH, and OH 
that engender a great potential for 
toxic chemical adsorption in metal-
contaminated soils.12,13 Particles of 
biochar promote air flow and increase 
soil porosity through landfill cover 
and, as a consequence, diffusion of 
dioxygen increased within the landfill 
cover, resulting in higher microbial 
degradation levels.134 Biochar can 
be used as a soil conditioner by 
enhancing the biological and physical 
characteristics of soils, for instance 
water holding capacity and retention 
of soil nutrients, while also supporting 
plant growth.135 Furthermore, the 
leaching of soil nutrients are reduced 
by biochar, while promoting nutrient 
availability for plants and decreasing 

the bioavailability of toxic metals.136 
Hossain et al. stated that biochar 
derived at low temperatures of 
300°C or 400°C is acidic in nature 
and alkaline at high temperatures of 
700°C.137 

Adsorption kinetics and adsorption 
isotherms 

Kinetic studies provide understandings 
of functional groups of biochar 
interactions with contaminants.138 

Furthermore, kinetic studies 
have significant importance in 
determining the required resident 
time for process-scale up and complete 
adsorption reaction.139 To improve the 
interaction by means of greater ionic 
concentration, other treatments, for 
example sodium sulfite, iron(III) oxide, 
and iron(II) sulfate on the surface of 
biochar, were examined to improve 
precipitation and chemisorption for 
removal of toxic metals.140 Kinetics 
adsorption showed the best fit 
in a pseudo second-order model 
that indicates that the process of 
adsorption was largely governed by 
available active sites on the surface 
of biochar instead of contaminant 
concentrations.30,141 The best kinetic 
model for most of the inorganic and 
organic pollutants was a pseudo 
second-order model.142 The studies 
indicated that physisorption is rapid 
and generally happens on carbon 
inner pores, while chemisorption 
is a limiting rate step which occurs 
slowly on the surface of carbon.143 
Conversely, studies have revealed that 
biochar maximum removal efficiency 
was a result of the contribution of both 
mechanisms of physisorption and 
chemisorption.30

The Langmuir model assumes an 
adsorption monolayer with no 
interactions among the molecules 
adsorbed, whereas the Freundlich 
model illustrates the process of 
chemisorption on the biochar 

heterogeneous surface.144 Distribution 
of surface charge on a biochar surface 
is largely dependent on pH, and 
conversely doses affect the capacity 
of adsorption and ion concentrations 
affect the abilities of systems for metal 
removal.144 Langmuir isotherm was 
also used to establish the removal 
of toxic metals using biochar by 
chemical treatments via increasing 
ionic concentrations, which indicated 
greater efficiency than untreated 
biochar.144

Potential risk of biochar application 
in the environment

Depending on the feed stocks used in 
their production, some biochars may 
contain some toxic metal pollutants 
(for example Cd, Cu and Pb) or other 
toxic metals, which chiefly originate 
from toxic metals-containing feed 
stocks such as industrial solid waste, 
sewage sludge, and residue for 
production of biogas.145 Biochar can 
induce both negative and positive 
effects on microorganisms, fauna 
and plants.146 For agrochemicals like 
herbicides and pesticides, biochar has 
a strong capacity for their adsorption, 
and also causes deactivation or 
accumulation of herbicides and 
pesticides, and residues act as a 
secondary pollutants.69 

The inherent physico-chemical 
properties and structure of biochar 
have indirect or direct impacts on the 
soil micro environment by affecting 
water content, nutrient content, 
porosity, soil bulk density and cation 
exchange capacity.147 Moreover, 
biochar can alter soil aeration and 
moisture condition, and affect the 
potential of soil redox, changing 
some charge-sensitive toxic metals 
toxicity.148 

The effects of biochar on soil physico-
chemical properties vary by type of 
feed stock, soil type, aging and biochar 
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application rate.149 Biochar can be 
polluted by Ni and Cr during the 
process of pyrolysis owing to reactor 
stainless-steel erosion parts.150 The 
effects of biochar on the treatment 
of toxic metal-contaminated soils 
also change with the species of metal 
and different physico-chemical 
properties of soils such as clay content, 
cation exchange capacity, pH value, 
redox potential, nutrient balance, 
concentrations of trace elements, 
moisture, anaerobic or aerobic 
conditions, temperature and soil 
organic matter content.151 Conversely, 
the two most important factors 
affecting toxic metals bioavailability 
are soil organic matter content and 
pH.152 Biochar that is alkaline can 
induce liming effects in soil and cause 
metal immobilization.50 Biochar 
addition into soils can lead to pH 
increase and metal solubility decline.153

Cadmium and Pb adsorption can be 
affected by biochar pore structure, 
while removal of Cu may be connected 
to surface functional groups, which 
could enhance the ability to bind 
metals and promote complex 
formations.154 Biochar ash content can 
also affect biochar sorption behavior, 
promote metal immobilization and 
precipitation.152 

Stability and aging effects of biochar

Biochar has a high degree of 
aromatization structure and 
carboxylate esterification, very low 
solubility, high carbon content, high 
stability, high boiling point, and 
strong resistance to chemical, physical 
and biological decomposition.155 
These characteristics allow it to 
exist for thousands of years in 
soil under natural environmental 
conditions.156 Adsorption ability, 
surface functional groups, and other 
biochar properties change with respect 
to time by microbial degradation or 
oxidation, which have been identified 

as processes of biochar aging.157 
Furthermore, the long-time stability of 
biochar must be further demonstrated 
in field studies.158 The long-term effects 
of biochar application on soil health 
and function, including its effects in 
different soil types, remain to be fully 
eluciated.159 

Some studies on immobilization 
capacity and properties of biochar 
showed changes in biochar properties 
under simulated processes of short-
term aging such as physical aging, acid 
aging, and hydrogen peroxide aging.160 

Biochar alkalinity can reduce aging, 
change the mineral composition, 
and increase the number of oxygen-
comprising functional groups (for 
example phenols and ketones).38,161 

Six-month aging in soil increased 
the number of grain husk biochar 
oxygenated functional groups and 
hence facilitated Zn binding onto 
biochar.162 

Discussion

Feed stock composition is responsible 
for the differences in pH across various 
biochars. The pH of biochar could be 
lowered due to production of phenolic 
substances and organic acids caused 
by decomposition in hemicelluloses 
and cellulose.15 The pH of biochars 
are mostly alkaline in nature and tend 
to upsurge with increasing pyrolysis 
temperature. 

The nature of feed stock and pyrolysis 
conditions of biochar influence its 
mineral composition. Biochars with 
higher mineral compositions provide 
extra opportunities for adsorption 
of toxic metals from water. Mineral 
composition such as Ca, K, Mg and 
P in biochar and biomass is also 
responsible for adsorption of metals 
from aqueous solutions.17 However, 
the role of mineral components in 
biochar is not well articulated, and a 
greater understanding is needed of 

the bioavailability of toxic metal ions 
in some biochars, the role of biochar 
intrinsic minerals, and the design of 
specific applications by integrating 
appropriate minerals into biochar.

The wide diversity of feed stocks is one 
of the main factors affecting biochar 
properties as it endows biochars 
with diverse chemical structures 
and compositions. For instance, 
the formation of porous biochars is 
significantly influenced by agricultural 
waste structures.25 The average pore size 
of biochar decreased with temperature 
of pyrolysis, as large pores are destroyed 
during further heating, causing the 
formation of more small pores. 

Pyrolysis temperature influences 
biochar’s aromaticity, morphological, 
structural and elemental properties. 
Many studies showed that different 
pyrolytic temperatures and feed 
stocks affect the pH, carbon content, 
aromaticity and ash content of 
biochar, among other parameters, 
which can further impact the 
effectiveness of biochars in repairing 
metal pollutants.5 Many biochars 
can sorb positively charged metal 
ions through electrostatic attractions 
because they are negatively charged 
surfaces. Biochar produced at various 
temperatures are expected to have 
diverse properties which will influence 
their individual performance in toxic 
metals immobilization/removal in 
contaminated soil and water. The 
selection of feed stock and pyrolytic 
conditions of biochar is critical to the 
removal of toxic metals from water 
and soil. Feed stock characteristics and 
pyrolysis conditions largely control 
the physico-chemical characteristics 
of biochar which regulate a given 
application suitability in addition to 
defining biochar behavior, fate and 
transport of contaminants in the 
environment. 

The pH influence on adsorption is 
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largely dependent on biochar type and 
the target pollutants. pH influences 
the equilibrium uptake of metal 
ion in aqueous solution due to the 
counter reaction of hydrogen protons 
competition in addition to the sorbent 
chemistry of active sites.44 Soil pH is 
exposed to temporal variations which 
affect the adsorption of toxic metals. 
In addition, the usage of ammonium 
fertilizers, nitrogen fixing species 
and acid rain can lower soil pH, 
occasioning an increase in metals 
mobility and related environmental 
risks. The alkaline minerals present 
in biochar when applied to soil or 
water will increase the pH of the 
environmental media. In addition, 
alkaline minerals on the biochar 
surface also become hot spots for toxic 
metal surface precipitation. Depending 
on the nature of agricultural waste 
used for the production of the biochar, 
these properties vary from biochar to 
biochar.

The pH after equilibrium can advance 
to a sufficient level by the biochar 
buffer capacity of pH at a higher 
initial pH, and the ion transforms to 
precipitation of hydroxide to settle. 
Adsorption performance can be 
affected by initial pH in the following 
ways: affinity and electrostatic 
repulsion between adsorbate and 
adsorbent; the process of ion exchange 
between adsorbate and adsorbent; 

and metal ion distribution such as 
insoluble or soluble and anion or 
cation.54-58 

The adsorbent dosage has a significant 
influence on adsorption efficiency.2,60 
Applying an optimum biochar dosage 
for pollutant removal is critical to its 
low-cost application. The adsorption 
of toxic metals increased with upsurge 
in the adsorbent dosage. Increases 
in the amount of biochar decreased 
adsorption efficiencies.2 Reduction 
in the amount of adsorption may 
be attributed to aggregation or 

overlapping of adsorption sites 
resulting in declines in adsorbent 
total surface area.15 Initial upsurge 
in the adsorption percentage can 
be accredited to the availability of 
more adsorption sites and increased 
adsorbent surface area. Conversely, 
not all adsorption sites are available 
for exchanging or binding on account 
of aggregation and overlapping, so a 
portion of the sorbent will not be used, 
and declines as the dosage upsurges 
after a certain value.53 

The energy of the system facilitates 
ion attachment onto the cell surface at 
higher temperatures. The adsorption 
increase with temperature may 
be accredited to an upsurge in the 
number of active binding sites 
available for the adsorption on the 
sorbent.46 

Biochar, with void structures and 
high carbon content, has copious 
aromaticity oxygen-comprising 
functional groups. Ionic/non-
ionic and polar/non-polar organic 
pollutants have diverse affinities for 
biochar when compared to anionic 
and cationic metals.50 Adsorption 
efficiency can be improved for 
soil and water contaminants if the 
properties of biochar and water and 
soil properties are well understood 
prior to remediation interventions. 
For soil remediation, moderately 
strong binding is favored for the low 
leachability/bioavailability of toxic 
metals in soil and long-standing 
stability.68 The effect of adsorption 
of toxic metal ions onto biochar is 
influenced by various factors such as 
pyrolysis temperature, biochar feed 
stock, soil pH, chemical and physical 
properties of metal ions and the 
dosage of biochar addition. Biochar 
applications in the environment are 
highly dependent on its mechanisms 
of interaction with toxic metals. Not 
all biochars are effective for adsorption 
of pollutants in the environment. 

The predominance and variability of 
a specific reaction of a biochar are 
controlled by its specific physico-
chemical characteristics, which is 
attributed to pyrolysis conditions 
and feed stock type. Variation in the 
characteristics of biochar greatly 
influence its efficacy and suitability 
for the remediation of targeted 
contaminants.

Biochar surface functional groups 
fix metal ions by complexation, 
surface precipitation, and electrostatic 
attraction. For instance, Zhang 
et al. showed that when pyrolysis 
temperature is increased to 500ºC or 
higher, CH (carbon hydrogen) and 
OH (hydroxyl) on the biochar surface 
derived from sludge are destroyed.77 
Poor functional groups as well as 
electron-rich groups are present in 
biochars derived at high temperatures. 

Biochar surface electrostatic attraction 
plays a very significant role in 
contaminant adsorption. Generally, 
biochar surface electricity is negative, 
making adsorption performance good 
for positive ions such as metal ions and 
ammonia, among others. For instance, 
magnesium salt was used to modify 
corncob biochar to have positive 
surface electricity, which enhanced 
adsorption phosphate efficiency.80 

The modification of biochar to have 
positively charged surface electricity 
can be used to adsorb anions. 

Mineral components of biochar can 
increase the properties of adsorption. 
The adsorption of toxic metals mainly 
through complexation reaction, ion 
exchange and electrostatic attraction 
of surface functional groups, in 
addition to the adsorption of nitrogen, 
mineral components precipitation, and 
phosphorus occurs mostly through the 
blend of electrostatic attraction with 
mineral composition precipitation.82

Adsorption increased with increasing 
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pH solution as more metal binding 
sites could be uncovered with negative 
charges. This phenomenon was 
attributable to the competition of 
substantial protons for vacant binding 
sites of adsorbents for the adsorption 
at lesser pH values. The organic 
matter contribution on Cd adsorption 
is small; alkaline earth metals, 
for instance Ca2+, are essential for 
adsorptive reaction, and precipitation 
formed between Cd2+ and Ca2+ by 
means of ion exchange and rising pH 
may be two main adsorption routes.53 

The toxic metal ion sorption reaction 
should be adaptable to a varied 
range of pH and is reliant on biochar 
characteristics determined by feed 
stock materials, pyrolysis temperature 
and conditions. 

Characteristics of biochar are a 
function of many factors, including 
particle size, type of feed stock, and 
pyrolysis conditions and temperature. 
Several studies investigated the impact 
of pyrolysis temperature on sorption 
affinities to toxic metals and structural 
characteristics of biochars.33,89 The 
mechanisms of sorption are largely 
dependent on the presence of cations 
in soil and biochar. Elevated values of 
pH after biochar addition can cause 
precipitation of metal in the soils. 

Biochar performed better due to 
its easy access to functional groups 
and high surface area. For instance, 
copper ions have a stronger affinity 
for biochar, due to the surface that 
forms complexes amongst Cu2+ and 
OH and COOH functional groups 
onto the biochar.101 The efficiency of 
metals removal by digested whole 
sugar beet biochar was above 97%, 
indicating that biochar had a great 
affinity for the tested toxic metals.81 

It can be concluded that all types of 
biochars were able to remove toxic 
metals and their removal rate varied 
due the biomass nature, physico-
chemical properties of biochar and the 

environmental conditions. 

The addition of biochar did not result 
in a total toxic metal content decrease 
in soil, nevertheless, addition of 
biochar reduced the mobility of Pb, Cr 
and Cd and the bioavailability of Zn, 
Pb and Cd. A sequential extraction 
of a number of metals and biochar 
derived from chicken manure was 
effective at reducing extractable Pb 
and Cd concentrations, but not Cu 
concentrations, while biochar derived 
from green waste was more effective 
in reducing all of the metal ions.121 
Biochars produced at 700oC were 
more effective, which was attributable 
to the material transformations, 
including nitrogen removal containing 
leachable aliphatic and heteroaromatic 
functional groups. 

Biochar has the potential to improve 
the agronomic value and quality of 
soil, while minimizing the injurious 
effects of toxic metals. Some biochars 
pose no risk of toxic metals increasing 
in plants and are therefore safe with 
regard to transfer in the food chain. 
For instance, treatments comprised of 
earthworms and biochar did not result 
in plant availability or higher mobility 
of metals.127 Biochar can be used to 
recover polluted areas and brownfields 
as it improves growth of trees, crops 
and other flora and increases soil 
fertility.3 In addition, it improves the 
capability of soil to handle flooding 
and drought. Biochar influences the 
physical characteristics of soil that may 
consequently have an uninterrupted 
effect on plant growth. Furthermore, 
the leaching of soil nutrients are 
reduced by biochar, while promoting 
nutrient availability for plants and 
decreasing the bioavailability of toxic 
metals.136 

Many factors influence the kinetics 
of adsorption, such as feed stock 
type, pyrolysis temperature and 
pH. Biochar amendment improves 

the pH of environmental media, 
which has led to higher pollutant 
removal efficiency. Studies provide 
information on pollutant interaction 
with biochar, which facilitate 
superior understanding of adsorption 
capacity, type of interaction and 
functionality.140,146 Langmuir and 
Freundlich adsorption isotherms 
have been employed to establish the 
relationship between the adsorbate 
concentration at equilibrium 
conditions and adsorbate loading on 
biochar. The Langmuir isotherm is 
best fitted for inorganic contaminant 
removal, particularly to study biochar 
pH, initial ion concentration and 
dosage effect on removal mechanisms 
of toxic metals.146,147,149 However, the 
model best fitted for organic pollutant 
removal is the Freundlich model, 
which provides a better understanding 
of the pyrolysis temperature effect 
on organic contaminant removal in 
environmental media. 

There are two main potential risks of 
biochar usage in the environment, 
the unconscious discharge of toxic 
elements from materials used in 
biochar production and from the 
biochar-based material production 
process.25 When applying biochar in 
water treatment, these toxic metal 
pollutants can easily be released into 
the water, causing secondary pollution. 
Soil pH is one of the key soil attributes 
controlling mobility of toxic metals 
in contaminated sites by influencing 
other soil properties. Most toxic metals 
become more bioavailable under acidic 
conditions. Biochar that is alkaline 
can induce liming effects in soil and 
cause metal immobilization.50 Biochar 
application can cause phytotoxicity 
by toxic metals, as well as low 
fertility, low water holding capacity, 
extreme pH values and poor soil 
structure, preventing establishment of 
plants.51 The effect of biochar on the 
bioavailability of toxic metals varied 
with the influence of application rate 
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and raw materials. The two most 
important factors affecting toxic 
metals bioavailability are soil organic 
matter content and pH.159 Biochar 
addition into soils can lead to pH 
increase and metal solubility decline.153

The long-term impacts of biochar 
on soil microbe/fauna, soil texture, 
fertility, toxicity and mineralogy 
are likely to be of greater concern. 
Understanding the lability and 
distribution of metal(loid) changes 
during aging processes is important for 
implementation of projects involving 
biochar in practical remediation 
works. Toxic metals can be released 
from particles of biochar into soil and 
interact with soil components, such 
as minerals.163 Some biochars contain 
toxic metals as a result of the relatively 
high concentrations of metals in the 
original feedstock.164 

Conclusions

Biochar properties have the ability to 
effectively adsorb toxic metals and 
other pollutants in water and soil. 
However, the characteristics of biochar 
are largely dependent on the feed stock 
biomass and pyrolysis conditions. 
Biochars have been used to adsorb 
toxic metals, agricultural residues 
and other organic contaminants. 
Biochar provides an excellent, 
eco-friendly and cost-effective 
medium for controlling water and 
soil environmental contaminants. 
However, understanding of the 
mechanisms of biochar adsorption is 
crucial for their utilization in water 
and soil remediation. There is an ever-
increasing need for understanding the 
mechanisms of adsorption, in order to 
utilize readily available biomass feed 
stocks.

Recommendations 
Agricultural waste biochar is an 
ecofriendly and promising method 
for the remediation of water and 

soil contaminated with toxic metals, 
however a few issues need to be 
addressed. Biochar has mainly 
been investigated under laboratory 
conditions, not in real environments, 
or scaled up for use in large 
contaminated sites. Furthermore, 
no single biochar will be effective in 
removing or immobilizing all toxic 
metals in polluted water and soils. 
The feed stock, pyrolysis temperature 
and conditions, biochar production, 
properties, cost and acceptability 
for use can lead to differences in the 
remediation effects of toxic metals in 
polluted water and soil. Hence, for 
successful application and wide use, 
there is an urgent need to determine 
optimum biochar options for toxic 
metal polluted water and soil with 
practical applications. Biochar 
properties vary with time. Further 
study is needed to understand how 
biochar influences the water and soil 
environment. 
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