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A number of anthropogenic and weathering activities accumulate heavy metals in soils,
causing adverse effects on soil characteristics, microbial activity (diversity), agricultural
practices, and underground aquifers. Controlling soil heavy metal pollution is difficult
due to its persistence in soils, resulting in the deposition and transmission into
the food web via agricultural food products, ultimately affecting human health. This
review critically explores the potential for remediation of metal-contaminated soils
using a biochar-based responsible approach. Plant-based biochar is an auspicious
bio-based residue substance that can be used for metal-polluted soil remediation
and soil improvement as a sustainable approach. Plants with rapid growth and
increased biomass can meet the requirements for phytoremediation in large quantities.
Recent research indicates significant progress in understanding the mechanisms of
metal accumulation and contaminant movement in plants used for phytoremediation
of metal-contaminated soil. Excessive contamination reduces plant biomass and
growth, which has substantial hyperaccumulating possibilities and is detrimental to the
phytoremediation process. Biochar derived from various plant sources can promote
the growth and phytoremediation competence of native or wild plants grown in
metal-polluted soil. Carbon-enriched biochar encourages native microbial growth by
neutralizing pH and providing nutritional support. Thus, this review critically discusses
the influence of plant and agricultural waste-based biochar on plant phytoremediation
potential in metal-contaminated soils.

Keywords: heavy metals, biochar, plants, bioremediation, phytoremediation

INTRODUCTION

Land degradation and soil contamination are a persistent threat to humans’ and the environment’s
wellbeing (Azam, 2016). Heavy metal and metalloid intensification in soil have increased rapidly in
terms of natural phenomena and anthropogenic activities, including mining, agricultural activities,
and industrial and municipal discharge, which all pose severe threats to environmental protection
and public health (Sharma et al., 2022). Because they are non-biodegradable, they might remain
in the soil, enter into the food chain via agricultural crops, and even accumulate in humans
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via biomagnification/bioaccumulation (Gogoi et al., 2021).
Heavy metals are a class of elements distinguished by their high
atomic weight and mass, with a specific density of greater than
5 g/cm3 (Buha et al., 2014). There are 21 non-metals, 16 light
metals, and 53 heavy metals among the 90 naturally occurring
elements (Gholizadeh and Hu, 2021). Such elements are divided
into two categories: those that could be needed in trace amounts
(Cu, Zn, Ni, Fe, V, Mn, Co, and Mo) by certain organisms
and others such as Pb, As, Cd, and Hg, which are entirely
considered as dangerous (Naja and Volesky, 2017). Heavy
metals in their natural state are not available for root uptake
or are not accessible to living beings. Anthropogenic sources,
such as battery manufacturing, mineral extraction (mining),
explosives, pesticides, herbicides, chemical fertilizers, and
effluent irrigation, cause an excessive increase in such elements,
contributing to their deposition and distribution (Dutta and
Sharma, 2019). When these activities exceed acceptable levels,
they endanger all living beings and have disastrous effects on
their concentration. These elements are tolerant in various ways
depending on the life form with which they are confronted
(Villa-Achupallas et al., 2018). Metal pollution has posed a
significant risk to human health as well as the environment due
to its toxic nature. Hence, remediation of metal pollution from
soils is critical (Rathour et al., 2022). Numerous remediation
strategies depending on their mobilization or immobilization
mechanisms have indeed been established to address these
issues (Akcil et al., 2015; Wang et al., 2021). However, they
are typically very expensive, and planned remediation is often
delayed due to the absence of sufficient funds (Yrjälä and
Lopez-Echartea, 2021). Unique nature-based substances are
emerging that ought to be cost-effective in remedial work but
necessitate further development because they require useful
insights into the structure–function relationships (Byrne et al.,
2018). Biochar, a carbon-rich component, is thought to play an
important role in the bioavailability of heavy metal-polluted soil,
resulting in biotransformation and bioremediation (Yu et al.,
2019). However, biochar is frequently produced from various
feedstocks using different pyrolysis processes; hence, the surface
characteristics may vary significantly (Yu et al., 2019). Plants and
biochar blending can be used to enhance the in situ or on-site
bioremediation. Nevertheless, this is critical to address a few
essential lines of study to ensure the safe and long-term use of
biochar. Biochar is being developed for use in the environmental
cleanup of both inorganic and organic contaminants, and
their integration with phytoremediation is an excellent option
(Rodriguez-Franco and Page-Dumroese, 2021). Since then,
biochar-blended phytoremediation has grown in popularity as a
groundbreaking technology for enhancing the phytoremediation
potency in metal-polluted soils (Muthusaravanan et al.,
2020). Various biochar properties demonstrate their influence
on heavy metal transport, mobilization, and precipitation,
improving soil structure, the release of nutrients, and
microbial diversity, thus supporting plant growth (Yuan
et al., 2019). This review presents the environmental influence
and applications of biochar-blended phytoremediation of
heavy metal-polluted soils and their interaction with plants
during remediation.

AGRICULTURAL WASTES FOR BIOCHAR
FABRICATION

The primary ingredients for biochar production are agricultural,
forestry, household, and livestock waste (Figure 1), which are
all abundant across the world. Agricultural waste has previously
been used in a limited number of applications, including
as a renewable source and animal feed (Spiertz and Ewert,
2009). Another report stated that the nationwide possibilities
for producing biochar from agricultural biomass have been
calculated and predicted to be around 3.1 million tons of biochar
from around 10.7 million tons of biomass (Awasthi et al., 2021).
The highest biomass is derived primarily from rice husk, which
has a yield of 6.8 million t y−1 and can produce biochar up to 1.77
million t y−1, accounting for approximately 56.48% of the total
nationwide biochar fabrication potential (Susilawati et al., 2020).

BIOCHAR PROPERTIES

Physicochemical Properties
Biochar is being used as a soil conditioner and is acquired
at low temperature pyrolysis—ranging from 400 to 700◦C—of
numerous biomasses including manure (cow dung), agriculture
waste (wastes of maize, sugarcane, weeds, and so on), and
biosolids in the absence of oxygen. It is thus differentiated
from charcoal (Khiari et al., 2019). The physical and chemical
properties of biochar obtained from wood, agricultural residues,
poultry manure, or sludge at various pyrolysis temperatures
are summarized in Table 1. Although the physicochemical
characteristics of biochar diversified substantially due to the
fabrication from a wide range of feedstocks using varying
pyrolysis processes, biochar is usually basic in nature with
such a large specific surface area, huge porosity, changeable
charges, and different functional groups, as mentioned in Table 1.
Such properties can also have an impact on pH, conductivity
(CEC), and surface adsorption capacities. Biochar particle size
is determined by the standard particle size of the feedstock;
nevertheless, it is usually much smaller due to shrinking and
attrition during the pyrolysis process. Due to the improved tensile
strength of raw materials at higher pyrolysis temperatures, it may
yield smaller-sized biochar particles (Albalasmeh et al., 2020).
The functional groups on the surface of biochar, porous structure,
and ionic charges can aid in the physical adsorption (Zhang
et al., 2020), co-precipitation (Chen et al., 2022), complexation,
mobilization/immobilization (Hu et al., 2020), and detoxification
(Alrashidi et al., 2020) of metal pollutants and support the
hyperaccumulator’s phytoremediation potential.

Nutritional Property
Biochar consists of a variety of nutrients, including K, Mg, K, Ca,
and P, which are derived from the pyrolysis raw material. During
pyrolysis, the dissolved organic material is also formed (de
Figueiredo et al., 2021). Hence, the biochar amalgamation could
provide plants and microorganisms with bioavailable nutrients.
The quantity and the type of the bioavailable nutrient content
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FIGURE 1 | Biochar fabrication from various agricultural wastes.

in biochar, on the other hand, are highly dependent on the raw
material (feedstock) and pyrolysis conditions (Yang et al., 2019).

The elements such as C and N in biochar differed
significantly while obtained from pine trees, poultry manure,
and peanut husk at 400 and 500◦C, respectively (El-Bassi
et al., 2021). Furthermore, transferable phosphate, potassium,
calcium, and magnesium were significantly higher in biochar
produced at 500◦C than in biochar produced at 400◦C (Ferjani
et al., 2019). The deviation was primarily associated with
the high pyrolysis temperature, which enhanced raw material
mineralization besides reduced CEC. From this standpoint,
obtaining nutrient-enriched biochar from a nutrient-enriched
raw material under appropriate pyrolysis conditions is critical
(Ma et al., 2015). In fact, plant-derived biochar appear to have a
reduced nutrient composition than biochar derived from manure
(Embrandiri et al., 2012).

Constancy Property
When biochar is applied to the soil, it appears as a separate
particulate matter that differs from many other kinds of solid
organic materials, which are either encapsulated in soil pore
spaces or adsorbed on the mineral surfaces and obscured in
aggregate particles (Kumar et al., 2018). Biochar with much
more aromatic black carbons on the exterior seems to be more
consistent in soil than other forms of organic carbons, thus
improving carbon storage potential in soil properties (Lian
and Xing, 2017). A previous study reported that the biochar
mineralization rates are very low, with carbon half-lives up
to 100 years (Williams et al., 2019). According to another
investigation, perfect biochar particles were found in soils
in wet tropical climates including the Amazon for millennia
(Agegnehu et al., 2017).

BIOCHAR – METAL(LOID) INTERACTION

Biogeochemical interactions in the ecosystem have a significant
impact on the destiny, transfer, and conversion or modifications
of metals and metalloids (Breda et al., 2018). Because ionic metals
and metalloids can occur in both anionic and cationic aspects,
their behavior will be influenced by interactions with anionic and
cationic charges of the biochar surface (Fijałkowska et al., 2021).
When combined with topsoil, biochar with negative charges can
strongly adsorb positive components (e.g., Cd2+ and Pb2+),
whereas biochar with cationic charges can maintain anionic
metal(loid)s (e.g., arsenite and arsenate) (Gupta et al., 2021).
Adsorption mechanism, surface (co)precipitation, and surface
complexation with active functional moieties are the major
mechanisms for the immobilization of cationic metals (including
Pb2+) and metalloids through biochar (Gupta et al., 2021).
Thus, the biochar-stimulated improvements in soils, including
increased soil pH, can reduce the bioavailability of cationic
metals and metalloids even further. Since the physical and
chemical attributes of biochar depend on the raw material type
and pyrolysis circumstances (e.g., temperature and frequency
of temperature rise), it is essential to recognize appropriate
raw materials for biochar fabrication that have the efficiency to
remediate various metals and metalloids in specific soils (Akhil
et al., 2021). Anionic metalloids, including Cr, Se, and As, are
frequently found as dominant species in soils with alkaline pH
compared to cationic metalloids that are poorly adsorbed by
negatively charged soil (Gupta et al., 2021).

The redox potential of metals and metalloids can influence
their mobility in soils. For instance, the reduced redox potential
of As (As3+ and As5+) has much higher permeability in soils
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TABLE 1 | Physical and chemical properties of biochar obtained from various plant residues and manure.

Biochar materials pH Temperature:
◦C (pyrolysis)

CEC
(mmol
kg−1)

Carbon
(%)

Carbon/
Nitrogen

ratio

Total
phosphate
(mg kg−1)

Elements (%) Surface area
(m2 g−1)

Volatiles (%) Ash (%) References

Ca Fe Mg N P K

Rice husk 8.9 300–400 37.3 23.4 – – 0.21 0.26 0.18 0.73 0.48 0.54 – – 44.35 Susilawati et al.,
2020

Oak wood 3.7−6.4 60−600 75.7−182 47.1−87.5 444−489 5−29 450−642 27.5−88.6 0.3−1.3 Lehmann et al.,
2011; Sun et al.,

2018

Palm bunches 9.39 350−450 9.9 42.33 − 0.4 0.5 0.67 0.99 0.49 8.65 − − 27.09 Susilawati et al.,
2020

Pine needles 6.4−10.6 300−700 − 84.2−93.7 22−26 − − − − − − − 4.1−391 6.2−38.6 7.2−18.7 Sun et al., 2018

Bamboo 9.30 350−450 9.30 50 − − 0.16 0.16 0.13 1 0.45 3.18 − − 11.26 Sun et al., 2018;
Susilawati et al.,

2020

Corn stover 6.7−9.4 60−600 252−459 42.6−70.6 51−83 526−2,114 − − − − − − 293−527 23.5−85.2 8.8−16.7 Susilawati et al.,
2020

Coconut shell 9.61 250−350 9.61 29.69 − − 0.29 0.29 4.43 1.28 0.52 2.96 − − 48.96 Sun et al., 2018

Chicken litters 8.2−10.3 60−700 58.7−363 7.9−38 10−25 493−16,685 − − − − − − 1−94 18.3−60.5 16.9−72.5 Susilawati et al.,
2020

Sludge 4.9−12 400−700 − 20−20.4 8.4−17 528−740 − − − − − − − 15.8−25.7 63.3−72.5 Sun et al., 2018

Palm cake 8.30 350−500 8.30 23.73 − − 0.09 0.04 0.30 0.87 0.44 0.72 − − 59.32 Susilawati et al.,
2020

Branch legume 9.4 − 7.05 18.11 − − − − − 0.58 0.1 1.11 − − − Sun et al., 2018
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than the increased redox potential of Cr (Cr6+ and Cr3+)
(Wang et al., 2020). Furthermore, the oxidation state of soils
can influence the redox potential of metals and metalloids. For
instance, it has been revealed that biochar converts Cr6+ to
the less mobile Cr3+ through consistently transferring electrons,
which may have been connected with oxygen-containing active
functional groups on that biochar surface (Dong et al., 2017).
Furthermore, microbial metabolism utilizing biochar-derived
organic carbon material can reduce Cr6+. The poor Cr solubility
led to the reduction process, and Cr immobilization in soil has
been enhanced. The adsorption and desorption mechanisms of
metalloids and metals in soils are also significantly influenced
by pH and organic matter because the adsorption of positively
charged metals in biochar is high in acidic soil. In acidic soils
(pH 3.5–6.0), Cr occurs predominantly in the positively charged
forms Cr3(OH)4

5+ and Cr(OH)2+ (Wang et al., 2020). The
biochar amendment to soil could perhaps alter the dissolved
organic content (DOC) and pH, thus resulting in the mobility of
metals and metalloids.

According to some research findings, biochar-amended soil
could improve the mobility of metals and metalloids such as
Sb, As, and Cu (Beesley et al., 2013; Sun et al., 2018). For
example, increased pH in biochar-amended soils led to increased
As mobility (Beesley et al., 2013). Electrostatic interaction
between anionic As and Sb elements and negatively charged
biochar substrates may enhance effective desorption of As and
Sb by increasing mobilization. In the case of Cu, mobility
is strongly correlated with the DOC content in biochar. Cu
can be immobilized by the adsorption process in the biochar
(prepared at 600◦C) surface with an elevated DOC content
(Sun et al., 2018).

BIO-/PHYTOREMEDIATION WITH
BIOCHAR

Biochar aids in the bioremediation of organic and inorganic
pollutants. The primary mechanism is an upsurge of microbial
diversity that degrades hydrocarbons (petroleum) in biochar-
amended polluted soils (Karppinen et al., 2017). Heavy metals
and metalloids cannot be deteriorated or completely eradicated
from the ecosystem, but they can be transformed from one form
to another, from higher concentration to lower concentration.
Heavy metals and metalloids can also accumulate in organisms
(Verma et al., 2021). Hence, most frequently, two strategies are
used for the heavy metal and metalloid bioremediation process
(Li et al., 2019). Absorption and accumulation of metals and
metalloids in timber plants and crops with bioenergy potential
in metal-polluted farmlands, and their deduction by harvesting
the biomass containing/accumulated with metals and metalloids,
and the transformation of toxic metals and metalloids into lesser
toxic products (complex form), which can be adsorbed by native
microorganisms and further reduce their toxicity and migration
(Sun et al., 2018).

Cd2+ denotes cationic metal ion (A) physiological adsorption
of cationic metals and metalloids of water from soil pores; (B)
biochar co-precipitation with chloride, carbonates, silicate, and

phosphate with metals; (C) complex formation with biochar
surface functional groups; and (D) gradual nutritional discharge
of DOC, N, Ca, P, and K for growth of plants and microbes in
the root region (Figure 2). The mechanisms (A), (B), and (C) can
minimize the bioavailable metal content in pore water, lowering
phytotoxicity even further.

The negatively charged outer layer of biochar and its alkaline
character can adsorb and sustain toxic metals through various
mechanisms. Biochar, via gradually discharging nutrients and
maintaining healthy soil structures and properties, also generates
much more favorable soil conditions for the growth of beneficial
microbes and plants (Das et al., 2021).

The existence of biochar significantly increased the lowering
precipitation of Cr6+ to Cr3+ in the contaminated soils due
to remarkably improved microbial activities encouraged by
releasing carbon and other nutrients from biochar (Choppala
et al., 2012). Furthermore, a decrease in the concentration may
aid in the immobilization of metals and metalloids, including
Cr6+ and U6+, but no evidence to date has demonstrated the role
of biochar in bioremediation/phytoremediation. In addition to
the effectively improved bioremediation, the existence of biochar
does provide an indirect mechanism for metal and metalloid
bioremediation (Sun et al., 2018; Gong et al., 2019).

Calcite precipitation caused by microbes can firmly adsorb
and co-precipitate metals and metalloids on the surfaces. The
metal ions along with an ionic radius similar to that of Ca2+,
including Cu2+, Cd2+, and Pb2+, may be integrated into calcite
crystal particles through alternative reactions during calcite
precipitation (Achal et al., 2011). Biochar aided this strategy
by making microbe-friendly soil conditions and potentially
increasing bioremediation efficiency (Arif et al., 2020). Bambusa
vulgaris biochar with an O2-releasing bead has been recently
demonstrated as a promising O2-releasing substance used in soils
and groundwater bioremediation (Wu et al., 2015). This kind of
biochar does have the potential to enhance the oxidation level
(from As3+ to a less mobile form) of metals and metalloids.

Influence of Biochar in
Bio-/Phytoremediation
A few research studies have investigated on biochar-augmented
phytostabilization of metals and metalloids (e.g., Zn, As, Ni,
Cd, Sb, Cu, and Cr) in contaminated soils (Uchimiya et al.,
2012). Figure 3 represents the possible influence of biochar on
bioremediation/phytoremediation of metal-contaminated soil.
Arsenic (As) is well-recognized to react differently from some
other metals and metalloids since the mobility of As can be
diminished in acidic soils, owing to the enhanced sorption
process on ferric oxide under an acidic environment. Hartley
et al. (2009) demonstrated that biochar can also be applied
for phytostabilization with Miscanthus species. Moreover, the
analysis revealed that adding biochar derived from hardwood to
soil samples did not improve As transport to Miscanthus plants,
whereas alkaline biochar can mobilize As in metal-contaminated
soils (Hartley et al., 2009). Cu and Pb were relatively
straightforward to be stabilized in biochar-administered soils,
whereas Cd and Ni differed widely depending on the nature
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FIGURE 2 | Possible benefits of biochar amendment in bio- and phytoremediation.

of biochar used (Uchimiya et al., 2012; Sun et al., 2018). The
stabilization mechanism is often probably due to increases in
soil pH. The detailed research has shown that soil alterations
(addition of lime) can be merged with phytoremediators to
considerably reduce the bioavailability of metals and metalloids.
Furthermore, biochar is also more effective at governing the
accessibility of toxic compounds, as well as enhancing plant
biomass fabrication and restoration performance (Břendová
et al., 2015; Maddalwar et al., 2021).

Plant yield increases with biochar supplementation (Ambika
et al., 2022) are connected to water and nutrient retainment,
enhanced biological activities, and neutralized soil pH. Hence,
biochar has the efficiency to be used as an amendment to
reduce metal bioaccumulation in plants. Moreover, alterations
in soil pH in the rhizosphere can feasibly influence the metal
and metalloid mobilization efficiency of biochar in soils, while
rhizosphere acidification should be avoided (Houben and Sonnet,
2015). Biochar is thought to interact with soils and balance
their properties for an extended period of time. Thus, the redox
mechanisms may cause biochar to change, a process called aging
(Gul et al., 2015). The immobilization of heavy metals and
metalloids in biochar has been associated with the lability of
metals (e.g., Pb2+ is more mobile than Cd2+). A wide range of
functional groups, including hydroxyl, carboxylic, and phenolic
groups could be established during the aging process, and
biochar aging had no effect on the immobilization of positively
charged metals and metalloids in soils containing aged biochar
(Heitkötter and Marschner, 2015; Fan et al., 2018).

Biochar-Assisted Phytoremediation
Phytoremediation is a multidisciplinary field with the
goal of mobilizing and/or immobilizing pollutants from
different environmental conditions (Shah and Daverey,
2020). Phytoremediation encompasses phytostabilization,
rhizoremediation, phytoextraction, phytodegradation, and
phytovolatilization in general (Shah and Daverey, 2020). In
comparison to certain other remediation practices for heavy
metals and metalloids, including chemical immobilization,
digging, and dumping, phytoremediation is gaining popularity
due to its efficiency and lower cost (Wu et al., 2015). Other
advantages, including erosion control and pollutant leaching
prevention, are critical for future soil management and
development. Table 2 summarizes some biochar-assisted
phytoremediation plants for metal- and metalloid-polluted soils
(Sun et al., 2018).

Biochar-Assisted Phytoextraction
The primary method for remediating soil contamination is the
phytoextraction process, which is typically associated with the
ability of hyperaccumulators and energy plants to bioaccumulate
metals and metalloids (Rezania et al., 2016). Numerous plant
species were also used to extract various metals (e.g., Cr, Cd, Pb,
As, Co, Cu, Zn, and Ni) from soils (Cameselle and Pena, 2016).
Plant species preferably being used for phytoextraction should
not just accumulate significant concentrations of the target metals
and metalloids; nevertheless, they also have an increased biomass
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FIGURE 3 | Phytoremediation potential of hyperaccumulator on metal-contaminated soil with and without the amendment of biochar.

TABLE 2 | Biochar-assisted phytoremediation for metal- and metalloid-polluted soils.

Name of plant Phytoremediation on metal-
and metalloid-contaminated

soil

Biochar and dose Effects on phytoremediation References

Anthyllis vulneraria,
Noccaea
rotundifolium and
Poa alpina

Ni, Cd, Ti, Zn, Cr, Pb, Cu, and
Fe

Pruning residues and
manure: 1.5–3%

Reduced water-extractable Zn, Cu, Cd, and Cr.
Increased pH

Fellet et al., 2014

Lolium perenne L.
var. Cadix

Pb and Cu Oka, Ash, and Birch: 20%
v/v

Reduced pore water-mediated Pb and Cu doses in
shoots

Sun et al., 2018

Solanum
lycopersicum

As, Cd, Zn, and Cu Hardwood Raised pore water with Cu and As. Immobilize Zn
and Cd owing to elevated DOC and pH

Beesley and Marmiroli,
2011

Oryza sativa As, Zn, Cd, Ni, Cr, Co, Pb, and
Cu

Sewage sludge: 5 and 10% Reduced pore water Pb, As, Ni, Cr, and Co owing
to elevated soil pH. Mobilize Cd, Cu, and Zn

Khan et al., 2013

Brassica juncea Cd, Pb, and Cu Poultry manure and green
waste

Increased (353%) plant shoot dry biomass.
Decreased Pb, Cd, and Cu accumulation in plants

Park et al., 2011

Brassica napus Cd, Zn, and Pb Miscanthus: 5 and 10% Reduced metals bioavailability in shoot biomass Bandara et al., 2017

Miscanthus×
giganteus

As Hardwoods: 20% Improved pore water with As Sun et al., 2018

Lycopersicon
esculentum

Cr, Mn, and Ni Wood: 2.5–5% Reduce exchangeable Cr, Ni, and Mn. Enhanced
plant growth

Bandara et al., 2017

yield, tolerate the toxic effects of metals and metalloids, should
be adaptable to soil and climatic conditions, are resistant to
insects and pathogens, and will also be suitable for cultivation
(Ranieri et al., 2020). The effectiveness of phytoextraction is

determined by two factors: yield and metal and metalloid
concentrations (Cameselle and Pena, 2016). Thus, the uptake of
metals and metalloids, which is the outcome of the two factors,
can sometimes be positive or negative (Coumar et al., 2016).
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Based on this, we identify that neither research findings
fulfill all of the aforementioned criteria. Nevertheless, one
study found that, while biochar-amended metal-polluted soil
enhanced the willow plant biomass, the concentrations of Cd
and Zn in willow were constant. Nonetheless, phytoextraction is
improved (Břendová et al., 2015). In practice, phytoextraction is
frequently used in farmland soils to reduce hazardous metal and
metalloid concentrations below soil quality standards, thereby
improving soil environmental quality and ensuring food security
(Sun et al., 2018).

Phytoextraction of heavy metal-polluted soils, including mine
sludge, could take centuries. Hence, the pollutant limits of
the target agricultural fields should be kept to a minimum
for phytoextraction (Mani and Kumar, 2014). However, a
hyperaccumulator has the potential to acquire elevated metal
and metalloid concentrations, but its slow growth rate frequently
limits its application (Ranieri et al., 2020). Energy and economical
plants, including sunflower and rapeseed, are often used to
retrieve Cd from farmland soils. Recently, biochar-assisted
phytoextraction has been emerging rapidly and used in practice.
Accordingly, biochar-assisted Brassica napus was used to retrieve
Cd metal-polluted agricultural soil (Houben and Sonnet, 2015).
Various plant species and biochar are often used in multi-
metal-contaminated soils. Nevertheless, limited research has
focused on the combined effect of biochar on phytoextraction
of heavy metal-contaminated soils (Houben and Sonnet, 2015;
Sun et al., 2018). Correspondingly, Amaranthus tricolor was
subjected to biochar-assisted phytoextraction to treat Cd-
polluted agricultural soils (Lu et al., 2015). So far, many research
findings showed that adding biochar to plants considerably
reduces heavy metal and metalloid bioavailability. Nevertheless,
some plants necessitate elevated doses of bioavailable metals
and metalloids to accumulate them. The advantages of biochar
include improved contaminated soil physicochemical properties,
increased microbial population and activities, and increased
ability to enhance agriculture production (Lu et al., 2015; Ye
et al., 2016). Hence, using biochar to remediate metal- and
metalloid-polluted soils not only immobilizes them but also
increases microbial population, lowering the environmental
threat of heavy metals and metalloids in soils even further
(Frankel et al., 2016).

Biochar-Assisted Phytostabilization
Phytostabilization is another phytoremediation method that is
widely used for the stabilization of metals and metalloids in
mine sludges (Barbosa and Fernando, 2018). The revegetation
approach reduces dispersion and erosion because plant roots stop
leaching, which contributes significantly to the immobilization
of metals and metalloids (Sarkar and Sadhukhan, 2022).
Precipitation, complexation, metal electron reduction, and root
adsorption are the potential phytostabilization mechanisms (Ma
et al., 2016). Phytostabilization, as opposed to phytoextraction,
is more concerned with metal and metalloid sequestration in
the rhizosphere than in other plant tissues (Yan et al., 2020).
Metals and metalloids are typically stabilized by applying soil
amendments (such as biochar and compost) and microbes in situ,
which improve metal immobilization and plant growth (Figure 3;
Kumpiene et al., 2019).

APPLICATION OF BIOCHAR AIDED
PHYTOREMEDIATION OF MINE SITES

Mining (e.g., coal, gold, copper, magnesite, bauxite, and iron
mining) activities can degrade soil quality and structure
and disturb biological systems and vegetation, thus leading
to widespread soil pollution (Gabarrón et al., 2019). Heavy
metal toxicity and elevated acidity of soil contaminated by
mining activity reduce the revegetation possibilities of metal-
polluted soils. Remediation of such metal-polluted soils can
be accomplished through phytoremediation, a long-term and
cost-effective rehabilitation approach that promotes revegetation
to minimize the chances of contaminant transfer and land
reclamation. However, these are difficult to accomplish in
the absence of appropriate soil amendments (e.g., biochar)
(Fellet et al., 2014). The biochar amalgamation with heavy
metal-polluted soil may improve pH fertility and water-holding
capacity, minimize the mobility of pollutants, and encourage
revegetation (Kelly et al., 2014). Phytoremediation of mine
sludge soil with biochar obtained from residues of orchard
prune and organic manure at four distinct concentration
levels (0, 1, 5, and 10%) demonstrated substantial benefits of
biochar in revegetating plant species in metal- and metalloid-
contaminated soils. Also, the bioavailability of Zn, Cd, and
Pb reduced proportionally as the biochar content increased
(Fellet et al., 2014).

CONCLUSION

One of the most important remedial technologies for heavy
metal- and metalloid-polluted soils is biochar-blended
bioremediation/phytoremediation. Biochar-stimulated phytore-
mediation has a significant potential for immobilizing cationic
heavy metals and metalloids in mine sludge soils and other
metal-contaminated soils, especially those under high acidic
conditions. Biochar can significantly decrease the bioavailability
and leachability of cationic metals and metalloids in soils;
enhance soil structure, physicochemical properties, fertility,
and revegetation; and foster soil microbial populations.
Nevertheless, since biochar appears to become less efficient
in stabilizing highly harmful cationic metals and metalloids,
which provide their mobility in soils, the implementation of
biochar-aided phytoremediation is competent in attempting to
resolve multi-metal-polluted soils. Furthermore, it is essential
to select suitable biochar in order to develop a successful
strategy for immobilizing anionic metals and metalloids initially
through an in vitro approach. Moreover, more extensive
research is required to assess the efficacy of biochar-amended
bioremediation/phytoremediation of heavy metal-polluted soils.
Scientific investigations should concentrate on the following
important themes: (A) demonstrating the interrelations between
raw materials used in pyrolysis, biochar physicochemical
properties, and soil bioremediation/phytoremediation; (B)
assessing the biochar consistency and its impacts on the transfer
of metals and metalloids in mine sludge and metal-polluted
soils in a field-level study; (C) knowing the mechanisms
of biochar-influenced bioremediation/phytoremediation,
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particularly the interactions between biochar, microbial
populations, plant roots, and soil particles.
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Fijałkowska, G., Wiśniewska, M., Szewczuk-Karpisz, K., Jędruchniewicz, K.,
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