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Abstract: As a new functional material, biochar was usually prepared from biomass and solid wastes
such as agricultural and forestry waste, sludge, livestock, and poultry manure. The wide application
of biochar is due to its abilities to remove pollutants, remediate contaminated soil, and reduce
greenhouse gas emissions. In this paper, the influence of preparation methods, process parameters,
and modification methods on the physicochemical properties of biochar were discussed, as well
as the mechanisms of biochar in the remediation of soil pollution. The biochar applications in soil
remediation in the past years were summarized, such as the removal of heavy metals and persistent
organic pollutants (POPs), and the improvement of soil quality. Finally, the potential risks of biochar
application and the future research directions were analyzed.
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1. Introduction

With the development of industry and high-intensity human activities in China, soil pollution
is becoming more and more serious, mainly due to the reduction of soil area and pollution by
chemical compounds such as pesticides, petroleum, heavy metals, persistent organic matter, and acidic
substances [1].

Pollutants in soil mainly include heavy metals and organic compounds, such as Cd, Pb, Cr,
pesticides, fertilizers, antibiotics, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls
(PCBs), etc. [2,3]. These pollutants not only affect the decline of crop yield and quality, resulting in
further deterioration of the atmospheric and water environment quality, but also have carcinogenic,
teratogenic, mutagenic effects, and genotoxicity, which endanger human health through the food
chain [4].

The remediation methods of contaminated soil are mainly divided into physical, chemical,
biological, and plant methods. Physical remediation technologies mainly include soil leaching,
thermal desorption, steam extraction, and off-site landfill [5]. But the disadvantages are its high
costs and the risk of secondary diffusion. Chemical remediation technologies mainly include
immobilization-stabilization techniques, redox, chemical modification, surfactant cleaning, and organic
matter improvement [6,7], but the chemicals used may cause secondary pollution to the environment.
There is a long repair cycle in bioremediation technology and the repair effect is susceptible to external
environmental factors.

Since Lehmann proposed the efficacy of Amazon black soil [8], scholars have found that the
biochar produced by the lack of oxygen through pyrolysis of agricultural and forestry wastes is a
material with well-developed pore structure, large specific surface area, abundant oxygen-containing
functional groups, and excellent adsorption performance [9,10]. Biochar remediation technology is
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between physical remediation and chemical remediation. On one hand, inorganic pollutants could be
removed by physical adsorption, and organic pollutants could be removed by distribution. On the
other hand, the application of biochar affects the solubility, valence, and existence of heavy metals in
the soil, thus immobilizing the heavy metals in the soil. Finally, toxicity of heavy metals was fixed or
reduced [9]. Due to its remarkable effect, low cost, and convenient operation, biochar has advantages
in the treatment of heavy metal and organic pollution [11].

Before summarizing the application of biochar in soil remediation, this paper summarized the
preparation and modification methods of biochar and analyzed the influence of different processes on
the physicochemical properties of biochar to deepen the understanding of biochar. As the adsorbing
material, the removal of heavy metals and organic compounds from soil and the main mechanism
of biochar were reviewed. As a soil improver, the improvement of soil pH, nutrient, nitrogen, and
phosphorus loss by biochar, and the application trend in the future, were summarized. At the same time,
the potential risks of biochar were analyzed to effectively avoid the possible harm to the environment.

2. Preparation and Modification of Biochar

2.1. Preparation of Biochar

The preparation methods of biochar are mainly divided into pyrolysis [12], hydrothermal
carbonization (HTC) [13], and microwave carbonization [14]. Different preparation methods affect the
physical and chemical properties of biochar, such as yield, ash, specific surface area, pore structure,
type and number of functional groups, and cation exchange capacity. Compared with the pyrolysis,
HTC does not require drying step and has a higher biochar yield [15]. The advantages of microwave
carbonization are controllable process, no hysteresis, rapid heating, and energy efficiency [16,17].
However, biochar prepared through HTC and microwave contained high concentrations of organics,
which are not actually considered soil remediation material.

2.1.1. Pyrolysis

Pyrolysis, also known as the thermal decomposition under oxygen-free conditions, is the most
common method for preparing biochar. In general, pyrolysis involves the heating of organic materials
to temperatures greater than 400 ◦C under inert atmospheres by electric heating or high-temperature
medium. There are many parameters influence physicochemical properties of biochar, such as raw
material, reaction temperature, heating rate, residence time, and reaction atmosphere.

2.1.2. Factors Affecting the Pyrolysis Process

The raw materials for the preparation of biochar are abundant. Basically, any form of organic
materials can be pyrolyzed [18]. Due to the large output of biomass solid waste resources, biomass is a
common raw material for biochar, mainly including wheat straw, corn straw, wood chips, melon seed
shell, peanut shell, rice husk, livestock and poultry manure, kitchen waste, sludge, fruit skin, etc. [19].
Biochar prepared from different materials contains different proportions of cellulose, hemicellulose,
and lignin, so its yield, element composition, and ash content are different [20,21]. Enders et al. [22]
found that the ash content of straw biochar is higher than that of other biochar, which is mainly caused
by the high Si content of straw. Yuan et al. [23] compared the physicochemical properties of biochar
prepared from different feedstocks (the straws of canola, corn, soybean, and peanut). The ash content
of biochar from corn straw prepared at 700 ◦C was the highest (73.30%), compared to canola, soybean,
and peanut straw biochar (28.55%, 23.70%, 38.50%, respectively).

The reaction temperature ranges of high temperature anoxic, hydrothermal synthesis, and
flash carbonization for the preparation of biochar are 400–900 ◦C, 180–250 ◦C, and 300–600 ◦C,
respectively [11]. In general, with the increase of pyrolysis temperature, the yield of biochar and
the number of acidic functional groups (-COOH, -OH) decreased, while the alkaline functional groups,
ash content, and pH increased. In addition, the effects of pyrolysis temperature on the surface area and
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pore volume are especially significant. Park et al. [24] showed that the specific surface area and total
pore volume of sesame straw biochar increased from 46.9 to 289.2 m2·g−1, 0.0716 to 0.1433 cm3·g−1,
respectively, with the pyrolysis temperature increased from 500 to 600 ◦C.

According to the different heating rate, it could be divided into slow pyrolysis (SP) and fast
pyrolysis (FP) [25]. SP is characterized by slow heating (minutes to hours) of the organic material in
the oxygen-depleted atmosphere and relatively long solids and gas residence times [26,27]. During the
SP process, liquid and solid products such as char, bio-oil, and syngas (CO, CO2, H2) are produced.
The FP involves blowing small particles of organic material into a thermal reactor and exposing it to
heat transfer in milliseconds to seconds [18]. Modern FP often takes place in fluidized bed systems,
systems using ablative reactors, and systems using pyrolysis centrifuge reactors (PCR) [28]. Slow and
fast pyrolysis results in biochars with different physicochemical properties, thus providing different
effects on the soil environment upon application. Compared with the FP-biochar contained labile
un-pyrolyzed biomass fraction, the SP-biochar can be pyrolyzed completely [26].

At the same pyrolysis temperature, the yield of biochar decreases with the increase of residence
time. Chen et al. [29] prepared orange peel biochar with the pyrolysis temperature of 700 ◦C and
residence time of 6 h, and the biochar yield was only 5.93%. The specific surface area and pores of
biochar increased with the extension of residence time. But the residence time is not as long as possible.
Lu et al. [30] found that the specific surface area and pores decreased from 2 to 3 h. The reason is
that the increase of residence time is conducive to the development of biochar pores, but excessive
residence time may cause damage to the pore structure [31].

The reaction atmosphere studied by scholars is dominated by inert gas, such as N2, Ar, which
mainly act to isolate oxygen. Besides, the atmosphere of CO2, H2O, NH3, O3 [32] is also used
to prepare biochar, which is known as physical activation, also called gas activation. The gases
selectively decompose the non-structural components of the biochar surface, open its internal pores,
and increase the specific surface area and pore volume [11]. Table 1 lists the biochar prepared by
different process parameters.

2.1.3. Other New Methods

In addition to the pyrolysis, hydrothermal carbonization, and microwave carbonization discussed
above, flash carbonization and torrefaction [33] are other methods of biomass transformation. During
the flash carbonization process, the flash fire is ignited at a high pressure (1–2 Mpa) on the biomass
packed bed to convert the biomass into the gas and solid phase products [11]. It is reported that
about 40% of biomass is converted to solid phase products (biochar) at 1 Mpa [34]. In addition to
microwave, new pyrolysis technologies such as laser and plasma cracking technologies have also been
developed. The sample usage of laser pyrolysis technology is small, and rapid heating and cooling can
be carried out, which can effectively avoid the occurrence of secondary reactions [35]. Plasma pyrolysis
technology is mainly applied in the preparation of syngas and coke. Compared with the traditional
cracking technology, it can greatly increase the syngas and reduce the yield of bio-oil [36,37]. However,
it is difficult to popularize the new pyrolysis technology due to its high cost and energy consumption.
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Table 1. Physicochemical properties of biochar prepared by different methods and process parameters.

Raw Material Atmosphere Temperature
(◦C)

Heating
Rate

(◦C/min)

Residence
Time (h) Yield (%) pH

Ash
Content

(%)

Surface
Area

(m2·g−1)

Total Pore
Volume

(cm3·g−1)

Pore
Diameter

(nm)
Reference

Herb residue N2

400
10 3

37.9 10.2 28.3 49.2 0.042 3.39
[38]600 31.2 10.1 31.1 51.3 0.051 3.99

800 29.1 10.6 37.1 70.3 0.068 3.87

Sesame straw oxygen-limited
400

5 2
35.6 30.77 37.2 0.0542

[24]500 28.2 28.54 46.9 0.0716
600 22.9 21.98 289.2 0.1433

Corn straw N2 600 3 10.0 5.02 61.0 0.036 23.7 [39]
Pine cone N2 500 1 4.66 2.13 6.6 0.016 [40]
Rice-husk 450–500 7.0 42.2 34.4 0.028 [41]

Hickory wood N2
450

10 2
28.5 7.9 6.47 12.9

[42]

600 22.7 8.4 4.18 401.0

Bagasse N2
450

10 2
28.0 7.5 13.68 13.6

600 26.5 7.5 15.36 388.3

Bamboo N2
450

10 2
26.3 8.5 8.83 10.2

600 24.0 9.2 11.86 375.5
Poplar chips N2 550 5 2 23.18 7.56 212.58 0.356 6.70 [43]
Burcucumber

plants oxygen-limited 700 7 2 27.52 12.23 43.72 2.31 0.008 6.780 [44]

Pine wood N2 600 10 1 4.02 209.6 0.003 [45]

Orange peel oxygen-limited 400 5 6 11.3 6.93 28.1 0.0409 2.9
[29]700 5 6 5.93 14.9 501 0.390 1.6

Marine
macroalgae N2 450 5 2 1.05 0.007 30.41 [46]

Municipal
solid waste

N2

400 0.5 8.0 6.1 20.7 0.027
[47]500 0.5 8.5 9.2 29.1 0.039

600 0.5 9.0 6.2 29.8 0.038
Rice straw oxygen-limited 700 2 58.97 369.26 0.23

[48]Swine manure oxygen-limited 700 2 60.73 227.56 0.14
Auricularia

auricula dreg 400 2 0.55 77.64 0.0612 4.837 [49]

Thalia dealbata N2 500 4 10.09 22.0 7.1 [50]
Corn straw N2 500 1.5 41.0 32.85 0.0148 5.01 [51]
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Table 1. Cont.

Raw Material Atmosphere Temperature
(◦C)

Heating
Rate

(◦C/min)

Residence
Time (h) Yield (%) pH

Ash
Content

(%)

Surface
Area

(m2·g−1)

Total Pore
Volume

(cm3·g−1)

Pore
Diameter

(nm)
Reference

Pitch pine oxygen-free 400 2 s 33.5 7.9 4.8
[52]500 2 s 14.4 7.7 175.4

Wheat straw N2 600 10 3 5.65 38.1 0.051 19.9 [53]
Rice straw N2 600 10 3 0.03 27.4 0.040 15.8

Digested sugar
beet tailing N2 600 10 2 45.5 9.95 336.0

[54]
Raw sugar beet

tailing N2 600 10 2 36.3 9.45 2.6

tea waste
oxygen-limited 700 7 2 28.35 10.87 342.22 0.0219 1.756

[55]N2 700 7 2 22.35 11.60 421.31 0.0576 1.904
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2.2. Modification of Biochar

In order to obtain biochar with superior properties, scholars studied the effects of different
modification methods on biochar. Modification refers to the activation of the original biochar through
physical and chemical methods, so as to achieve the desired purpose. The type of activator, soaking
time, activation time, and activation temperature all affect the properties of biochar. Table 2 lists the
biochar prepared from different modified.

2.2.1. Chemical Oxidation

Chemical oxidation refers to the oxidation of the biochar surface to increase the oxygen-containing
functional groups such as -OH, -COOH, etc., thereby its hydrophilicity is increased. At the same
time, the pore size and structure of the biochar would be changed, and, finally, its adsorption capacity
for the polar adsorbate would be enhanced. The commonly used oxidants are HCl, HNO3, H2O2,
H3PO4, etc. [56–60]. Although the specific surface area of biochar modified by HCl, HNO3, and
H2O2 has little difference, compared with biochar modified by HCl, the biochar modified by HNO3

contains more acidic oxygen-containing functional groups [61] and has stronger adsorption capacity
for NH3–N. Compared with other acids, biochar modified by H3PO4 has more advantages in removing
Pb pollution. The increased specific surface area and pore volume, as well as the role of phosphate
precipitation, increase the biochar adsorption capacity of Pb [60].

2.2.2. Chemical Reduction

Chemical reduction is also known as alkali modification method. The reducing agent was used
to reduce functional groups on the surface of biochar, so as to improve its non-polarity. Meanwhile,
chemical modification also can improve porosity and specific surface area of biochar. Finally, adsorption
capacity of biochar for pollutants is enhanced, especially for non-polar adsorbates. The commonly
used reducing agents are NaOH [62], KOH [63], NH4OH [64], etc. [65]. Different reducing agents
have different modification effects. In order to determine suitable modified biochar for improving
adsorption capacity of volatile organic compounds (VOCs), Li et al. [64] used NH4OH, NaOH, HNO3,
H2SO4, and H3PO4 to carry out chemical treatment on coconut shell-based carbon. The results showed
that, compared with the poor adsorption capacity of acid-treated carbon, high adsorption capacity was
obtained for alkali-treated carbon. The reason is that surface area and pore volume increased and total
oxygen containing function groups were diminished when treated by alkalis, while acid treatment was
the opposite. Pouretedal et al. [66] found that the process of biochar activation by KOH and NaOH is
different. Atomic species, K, formed in situ during KOH activation intercalates between the layers of
the carbon crystallite, while there is hardly any evidence for the intercalation of Na with carbon.

2.2.3. Metal Impregnation

Metal impregnation refers to the adsorption of some heteroatoms or metal ions into the surface and
pores of the biochar. On one hand, the specific surface area is increased, and on the other hand, metal
ions are combined with the adsorbate to improve the adsorption performance. Common metal ions
are iron [67], magnesium [68], silver [69], zinc [70], etc. Some scholars have combined the advantages
of chemical reagents to achieve better adsorption performance. Lyu et al. [71] prepared a novel biochar
material (CMC–FeS@biochar) via combining carboxymethyl cellulose (CMC) and iron sulfide (FeS),
and demonstrated the effective sorbent of CMC–FeS@biochar composite for removal Cr(VI).
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Table 2. Preparation of different modified biochar.

Raw Material Reagent Pollutant Modification Method Modification Effects Reference

Bamboo
hardwoods

NaOH, CS2 Cd

The composition of sulfur modified mixture
solution was obtained by stirring NaOH and
CS2. Biochar and sulfur modified mixture
solution stirred at 45 ◦C for 8 h.

Sulfur-modified biochar (S-BC) has more roughness,
with a more granular massive structure than that seen
on the pristine biochar. [76]

FeSO4

S-BC was added to FeSO4 solution and then
stirred for 16 h with magnetic stirrer at 40 ◦C,
and cooled slowly to room temperature and
filtered through 0.45 µm filters. The feedstock
was oven-dried at 40 ◦C.

Successful impregnation of sulfur and iron onto the
SF-BC surface, and it showed various atomic
proportions of sulfur and iron, with biochar ranging
from 0.48% to 4.66% and 0.44% to 22.25%,
respectively.

Poplar chips AlCl3 NO3
−, PO4

3−

The poplar pieces were impregnated into AlCl3
solutions with different concentrations for 6 h.
The mixtures were dried at 80 ◦C for 48 h. The
pretreated pristine poplars were pyrolyzed
under the N2 atmosphere at 550 ◦C with a
heating rate of 5 ◦C/min, and the peak
temperature was maintained for 2 h.

The biochar yield increased after modification with Al.
The carbon content of the Al-modified biochar
significantly decreased compared with the pristine
biochar. The BET surface area significantly increased
with the Al content of the biochar. NO3

− and PO4
3−

adsorptions significantly improved on the
Al-modified biochar.

[43]

Rice straw,
swine manure H3PO4 Tetracycline (TC)

Biochars were immersed in H3PO4 solution for
24 h at 25 ◦C. Then, the H3PO4 modified
biochars were washed by distilled water until
the pH of supernatants was stable. Finally, the
supernatants were discarded and the biochars
were oven-dried overnight at 105 ◦C.

The H3PO4 modification enhanced the surface area of
biochars produced from rice straw biochar (RC) and
swine manure biochar (SC). Compared with SC,
modified SC presented higher total pore, micropore
and mesopore volume by 0.25 to 0.14, 0.09 to 0.07, 0.17
to 0.07cm3·g−1), but there was no change between RC
and RCA modification.

[48]

Wheat straw,
cow manure HNO3 U(VI)

Biochar powders were treated with 300 mL 25%
HNO3 solution at 90 ◦C for 4 h. The excess acid
was removed by centrifugation. All oxidized
biochar samples were washed with deionized
distilled water, freeze-dried, and milled to <0.25
mm.

Owing to the higher contents of surface COO groups
and more negative surface charge, the modified
biochar showed enhanced U(VI) adsorption ability
than the unmodified biochar. The maximum
adsorption capacity of U(VI) by the oxidized wheat
straw biochar showed an improvement of 40 times
relative to the untreated biochar.

[77]
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Table 2. Cont.

Raw Material Reagent Pollutant Modification Method Modification Effects Reference

Auricularia
auricular dreg

(AAD)

cetyltrimethyl
ammonium

bromide (CTAB)
Cr(VI)

Mixed 5 g of dried AAD biochar with 250 mL of
3.0% CTAB solution in 25 ◦C for 2 h. Residual
CTAB rinsed with deionized water and the
material was dried at 70 ◦C until the weight
remained constant.

After modification, the surface area increased 6.1%
and the average pore diameter increased 16.5% (77.64
m2/g and 48.37 Å). Moreover, the number of
mesoporous and micropores in unit area increased
obviously. The adsorption rate and quantity of
modified AAD biochar were 6.4% and 8.0% higher
than those of AAD biochar, respectively.

[49]

Thalia dealbata MgCl2
sulfamethoxazole

(SMX), Cd

Thalia dealbata were soaked in 100 mL 1 M
MgCl2 solution, after 0.5 h mixing under
magnetic stirring, the pre-treated biomass was
then separated from the solution and pyrolyzed
at 500 ◦C.

The surface area of MgCl2 modified biochar (BCM,
110.6 m2·g−1) was higher than untreated biochar (BC,
7.1 m2·g−1). The addition of BCM increased the
sorption of SMX (by 50.8–58.6%) and Cd (by
24.2–25.6%) as compared with BC. In situ remediation
with BCM decreased the mobility and bioavailability
of SMX and Cd in sediments.

[50]

Corn straw Na2S and KOH Hg(II), atrazine

Biochar were mixed with 500 mL of 2 M Na2S or
2 M KOH solution and stirred for 4 h. The
suspension was then filtered and washed with
deionized water for several times until the pH of
the filtrate was nearly 7. The washed biochar
was dried overnight in an oven at 105 ◦C.

Sulfur content significantly increased by 101.29%
under Na2S modification. Compared to untreated
biochar (BC, 32.85 m2·g−1), chemical modification
increased the BET surface area which was 55.58 and
59.23 m2·g−1 for Na2S modified biochar (BS), KOH
modified biochar (BK), respectively. In comparison to
BC, the sorption capacity of BS and BK for Hg (II)
increased by 76.95%, 32.12%, while that for atrazine
increased by 38.66%, 46.39%, respectively.

[51]

Coconut shell HCl+ultrasonication Cd, Ni and Zn

5 g of CS biochar and 250 mL of 1 M HCl were
mixed in beaker and ultrasonicated for 3 h with
interval stirring. Then, the material was filtered,
washed, and dried to constant weight.

Modified coconut shell biochar (MCSB) improved
surface functional groups and microcosmic pore
structure of pristine biochar (CSB).

[78]

Dairy manure NaOH Pb and Cd

Biochar and 2 M NaOH were thoroughly mixed
with a solid–liquid ratio of 1:5 and then were
re-suspended for 12 h with a speed of 30 r min−1

at 65 ◦C. After that, the mixture was filtered, and
the precipitate was collected and rinsed with
deionized. Finally, material was dried at 105 ◦C.

The NaOH treatment increased the specific surface
area, ion-exchange capacity, and the number of
oxygen-containing functional groups of biochar. The
adsorption capacities of biochar for Pb and Cd
increased after modification. The highest sorption
capacities were 175.53 and 68.08 mg·g−1, for Pb and
Cd, respectively.

[79]
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2.2.4. Other Modification Methods

In addition to the above three modification methods, modification methods such as
low-temperature plasma [72,73], organic matter grafting [74], and ozone oxidation [32] have also been
studied. Low-temperature plasma modification means that plasmas generated by glow, microwave,
and corona were collided with C=C on the surface of biochar, and plasmas were oxidized to the
oxygen-containing functional group, and enhanced the polarity of biochar [75]. However, such
methods have not been widely used due to high cost and complicated operation.

3. Removal Mechanism of Major Pollutants by Biochar

The remediation mechanisms of soil pollution by biochar include ion exchange, physical
adsorption, electrostatic interaction, precipitation, and complexation [9].

3.1. Ion Exchange

Ion exchange means the process that acidic oxygen-containing functional groups on the surface
of biochar, such as carboxyl groups, carbonyl groups, and hydroxyl groups, can ionize H+ or surface
base ions such as Na+, K+, Ca2+, Mg2+, etc., to exchange with heavy metal ions or cationic organic
pollutants [80].

3.2. Physical Adsorption

Physical adsorption means that biochar utilizes its surface characteristics, namely porosity and
large specific surface area, so that pollutants such as heavy metals or organic substances could be
adsorbed on its surface or diffused into the micropores. The diameter of the heavy metal ions is
smaller than the average pore diameter of the biochar. Generally, the smaller the diameter of the
heavy metal, the more the pores penetrate into the pores of the biochar, thereby increasing the
adsorption capacity [81,82]. The intensity of physical adsorption is closely related to the properties and
specific surface area of biochar, the properties and concentration of pollutants, and the temperature
during adsorption process. Physical adsorption kinetics is usually fitted by pseudo-first-order and
pseudo-second-order kinetic models [83,84]. Physical adsorption can be either single-layer adsorption
or multi-layer adsorption, which is usually fitted by Langmuir and Freundlich model [85,86].

3.3. Electrostatic Interaction

Electrostatic interaction refers to the electrostatic adsorption between the surface charge of biochar
and heavy metal ions. When the pH value of solution is greater than the charge point of biochar
(pHpzc), the negative charge on the surface of biochar and the heavy metal with positive charge causes
electrostatic adsorption. Heavy metal ions with positive charge on the surface of biochar combine with
oxygen-containing functional groups such as carboxyl, carbonyl, and hydroxyl [87–91].

3.4. Precipitation

Mineral components in biochar, such as CO3
2−, PO4

3−, SiO3
4−, Cl−, SO4

2−, SO3
2−, and OH−,

combine with heavy metal ions to form water insoluble substances such as metal oxides, metal
phosphates, and metal carbonates, which promote the adsorption and immobilization of heavy metals.
Xu et al. [92] believed that the adsorption of Cu, Zn, and Cd by fertilizer biochar was mainly attributed
to the precipitation of CO3

2− and PO4
3−, while the electron surface complexation via -OH groups or

delocalized π was less.

3.5. Complexation

Complexation refers to the interaction between oxygen-containing functional groups on the
surface of biochar and heavy metals to form complexes, which could be fixed. Qian et al. [93] studied
the aluminum phytotoxicity of cow manure biochar to wheat and concluded that the adsorption of
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aluminum by biochar was mainly through the complexation of carboxyl group with [Al(OH)]2+ and
its monomer surface, rather than through the electrostatic attraction of Al3+ with negative charge sites.
Jia et al. [94] believed that the adsorption of oxytetracycline by biochar was mainly mediated by π–π
interaction and metal bridge, with surface complexation as the main factor, and cationic exchange
might exist.

In the process of adsorption, it is often not a single mechanism, but a combination of
multiple adsorption mechanisms. Table 3 summarizes the adsorption mechanism of biochar for
pollution restoration.
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Table 3. Adsorption mechanism of biochar for pollution remediation.

Raw Material Pollutant Mechanism Reference

Municipal sewage sludge Cd Surface precipitation under alkaline conditions and exchange of exchangeable cations
with Cd. [95]

Fertilizer Cu, Zn and Cd Precipitate from CO3
2−, PO4

3− on the surface of the biochar, partially by surface
complexing with -OH group or delocalized π electron.

[92]

Rice husk loaded with
manganese oxide Pb

Oxide spherical complexes and biochar surface oxygen complexes; the π-band electron
density of graphene-based carbon in the π-electron cloud system reduces vacancies on
the surface of biochar, thereby adsorbing Pb2+.

[96]

Wheat straw, pine needles Zn The components of -OH, CO3
2-, and Si in biochar can form precipitates with Zn2+. [97]

Bamboo, eucalyptus chloramphenicol
Electron-donor-acceptor (EDA) interaction with pH < 2.0, also forms charge-assisted
hydrogen bonds (CAHB) and hydrogen bonds at pH 4.0–4.5, and interaction with
CAHB and EDA at pH > 7.0.

[98]

Corn straw Hg(II), atrazine

After Na2S modification, sulfur impregnated onto the biochar reacted with Hg(II) to
form HgS, which greatly facilitated the sorption of Hg(II). Formation of surface
complexes between Hg(II) and the functional groups of sorbent, such as phenolic
hydroxyl, carboxylic groups. These oxygen-containing functional groups exchanged
ion with Hg(II). The electrostatic and EDA interaction also participated in Hg(II)
sorption.

[51]

Dairy manure Pb and Cd

Because of the easy hydrolysis of Pb at low pH, biochar has a higher affinity for Pb than
Cd. Besides, precipitation as carbonate minerals (2PbCO3·Pb(OH)2 and CdCO3) and
complexation with functional groups such as carboxyl and hydroxyl, were also
important for adsorption of Pb and Cd by biochar.

[79]

Rice straw, swine manure Tetracycline (TC) The H-bonding, electrostatic attraction and EDA interaction might be the primary
mechanism during adsorption process. [48]

Sugar beet tailing (SBT) Cr(VI)

First, SBT biochar reduced Cr(VI) to Cr(III) by electrostatic adsorption. Second, with the
participation of hydrogen ions and the electron donors from SBT biochar, Cr(VI) was
reduced to Cr(III). Then, the function groups on the SBT biochar complexed with
Cr(III).

[99]

Empty fruit bunch, rice husk As(III), As(V) Surface complexes were formed between As(III) and As(V) and the functional groups
(hydroxyl, carboxyl, and C–O ester of alcohols) of the two biochars. [100,101]

Bamboo biomass Sulfathiazole, sulfamethoxazole,
sulfamethazine

The sorption of neutral sulfonamide species occurred mainly due to H-bonds followed
by EDA, and by Lewis acid-base interaction. EDA was the main mechanism for the
sorption of positive sulfonamides species. The sorption of negative species was mainly
due to proton exchange with water forming negative CAHB, followed by the
neutralization of -OH groups by H+ released from functionalized biochar surface, and
π–π electron-acceptor–acceptor (EAA) interaction.

[102]
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4. Application of Biochar in Soil Remediation

4.1. Removal of Heavy Metals

The removal of heavy metals by biochar is mainly reflected in two aspects: One is the adsorption
of heavy metals in the pores of biochar to reduce the residual amount in the soil; the other is the ion
exchange or redox reaction between the effective components in biochar and heavy metal ions to
stabilize the formation of heavy metal precipitates or to reduce toxicity by transforming them into
low-valent states.

Boostani et al. [103] investigated the effect of sheep and earthworm manure biochars on Pb
immobilization in a contaminated calcareous soil. The addition of biochars resulted in a significant
increase in the Pb content in the residual state, which reduced the Pb activity in the soil. Chen et al. [79]
studied the adsorption mechanisms for removal Pb and Cd with dairy manure biochar. The extractable
Pb and Cd contents decreased significantly and were converted to the precipitation as carbonate
minerals. However, it may also be due to the lack of selective adsorption capability of biochar, which
adsorbs nitrogen in the soil, resulting in a decrease in soil nutrients [104]. When the soil pollution is
contaminated by complex heavy metals, although biochar reduces the concentration of extractable
heavy metals, biochar has different adsorption effects on different heavy metals due to competitive
adsorption. Yang et al. [105] showed that straw and bamboo biochar are more effective than Zn in
reducing extractable Cu and Pb. Zhou et al. [106] also reached a similar conclusion. In the single
metal adsorption test, the adsorption capacity of sludge biochar to Zn was the largest, while in the
polymetallic adsorption test, the adsorption capacity of Mn, Cu, and Zn decreased, but the adsorption
capacity of Cr increased. Table 4 shows the research on removing heavy metals in soil by using biochar
in the past two years.
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Table 4. Study on the application of biochar to the remediation of heavy metal pollution in soil.

Raw Material Tested Soil Pollutant Remediation Effect Reference

Bamboo, rice straw, and
Chinese walnut shell

industrial
contaminated soil Cu Cu uptake in roots was reduced by 15%, 35%, and 26%, respectively. Rice straw

biochar reduced solubility of Cu and Pb. [107]

Sewage sludge Brazil soil Cd, Pb, and Zn Biochar reduced the concentration and bioavailable levels of Cd, Pb, and Zn of
in the leachates. [108]

Poultry litter paddy soil near Zn
and Pb mines Cd, Cu, Zn, Pb Acid-soluble Cd in soils amended with poultry litter biochar was 8% to 10%

lower than in the control polluted soil. [109]

Wheat straw acid soil Cd and Cu Cu concentration in wheat roots was reduced most efficiently to 40.9% by
biochar. Available Cd and Cu in soil added biochar decreased 18.8% and 18.6%. [110]

Rice husk saturated soil, dryland
soil Cd The adsorption of Cd on saturated soil increased by 21–41%, and that on

dryland soil increased by 38–54%. [111]

Gliricidia sepium shooting range soil Pb, Cu
The addition of biochar to the soil reduced the dissolution rates of Pb and Cu by
10.0–99.5% and 15.6–99.5%, respectively, and was able to fix Pb and Cu released
by protons and ligands in the soil.

[112]

Poultry manure, cow manure,
and sheep manure farmland soil Cr(VI)

Poultry manure decreased61.54 mg·kg−1 Cr(VI) in acidic soil and 73.93
mg·kg−1 Cr(VI) in alkaline soil. Cow and Sheep manure decreased by 66.61,
58.67, and 57.81, 68.15 mg·kg−1 Cr(VI) in acidic and alkaline soil, respectively.

[113]
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In order to achieve better remediation effect, scholars gradually carry out research on the
modification of biochar. Modification refers to the activation of the original biochar through physical
and chemical methods, so as to achieve the desired purpose. The modification methods of surface
structure characteristics are generally divided into physical method, chemical method, and combined
method [65]. In the early stage, Monser et al. [114] modified activated carbon with sodium dodecyl
sulfonate to reduce the heavy metal content in phosphoric acid and reduce the content of cadmium
and chromium. Scholars have modified biochar similarly to activated carbon, mainly by chemical
modification, through adding acid, alkali, oxidants, and supporting various metal oxides to aminated,
acidify, and alkalinize biochar. Oxidation, etc., increase the surface oxygen-containing functional
groups, thereby achieving a good repair effect. Studies on the adsorption effect of modified biochar are
dominated by heavy metals, followed by organics, and most of them are adsorption of heavy metals in
aqueous solution. Table 5 provides a summary of studies on soil pollution remediation by various
types of modified biochar in recent years.
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Table 5. The remediation of soil pollution by various types of modified biochar.

Raw Material Modification Pollutant Tested Soil Remediation Effect Reference

Bamboo hardwoods sulfur-iron Cr plant farmland

Sulfur-modified biochar (S-BC) and sulfur-iron modified
biochar (SF-BC) addition increased the content of soil organic
matter, alpha diversity indices, and changed soil bacterial
community structure. The exchangeable Cd in soil was
decreased by 12.54%, 29.71%, 18.53% under the treatments of
BC, S-BC, SF-BC, respectively.

[76]

Poultry, cow, sheep
manure Chitosan, ZVI Cr uncontaminated

surface soil
Modified sheep manure biochar reduced Cr(VI) by 55%, and
poultry manure modified biochar reduced Cr(VI) by 48%. [113]

corn straw Fe-Mn As paddy soil
Modified biochar decreased the content of available As,
increased the residual, amorphous hydrous oxide-bound, and
crystalline hydrous oxide-bound As forms.

[115]

Eucalyptus wood and
poultry litter iron Cd, Cu, Zn, Pb paddy soil near Zn

and Pb mines

Acid-soluble Cd, Zn, Cu in soils amended with poultry litter
biochar (PLB) was 8% to 10%, 27% to 29%, 59% to 63%,
respectively, lower than in the control polluted soil. Plant
biomass increased by 32% in the treatments containing
magnetic PLB.

[109]

Coconut shell HCl + ultrasonication Cd, Ni, and Zn topsoil of paddy
fields

In groups with 5% MCSB addition, the acid soluble Cd, Ni and
Zn decreased by 30.1%, 57.2%, and 12.7%, respectively. [78]

Rice husk Sulfur Hg Hg contaminated
soil

Modification increased the Hg2+ adsorptive capacity of biochar
by 73%, to 67.11 mg·g−1. And freely available Hg in TCLP
(toxicity characterization leaching procedure) leachates by
95.4%, 97.4%, and 99.3%, respectively, compared to untreated
soil.

[116]

Corn straw MnO As red soil
Modified biochar (MBC) in red soil had a much greater
sorption capacity for As(III) than pristine biochar, although
both enhanced the sorption of As(III) in red soil.

[117]
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4.2. Removal of Persistent Organic Pollutants (POPs)

The persistent organochlorine pesticides in farmland soils in are still seriously polluted, and the
polycyclic aromatic hydrocarbon pollution caused by sewage irrigation cannot be ignored. Biochar
has a strong adsorption capacity for organic pollutants, and the process can be understood as the
accumulation and collection of organic pollutants on biochar. Table 6 shows the research on the
removal of POPs from soil by using biochar in the past two years.
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Table 6. Study on the application of biochar to remove persistent organic pollutants (POPs) in soil.

Raw Material Tested Soil Pollutants Remediation Effect Reference

Fir wood chips rice soil 2,4-dichlorophenol, phenanthrene Reduced the degradation and mineralization of both pollutants. Increased the
accumulation of their metabolites in soil. [118]

Mixed wood shavings
Rice husk

loamy
agricultural soil

Pyrene, polychlorinated biphenyl and
dichlorodiphenyldichloroethylene

(DDE)

At the biochar dose of 10%, bioavailability and accessibility by 37% and 41%,
respectively, compared to unamended soil. [119]

Rice hull loamy clay, sandy
loam, clay loam oxyfluorfen

Oxyfluorfen degraded faster in biochar amended soil than in unamended soil.
Biochar decreased the oxyfluorfen uptake by soybean plants by 18–63%, and the
adsorption capacity of oxyfluorfen by soybean decreased.

[120]

Orchard pruning biomass vineyard PAHs
During the investigated period, PAH concentrations decreased with time and the
change resulted more intense for light PAHs. The soil properties (TOC, pH, CEC,
bulk density) were modified after two consecutive applications

[121]

Corn straw and bamboo soil contaminated
with PAHs PAHs

The bioaccumulation of PAHs in rice roots was reduced, especially high molecular
weight PAHs. The total and bioavailable concentration of PAHs in the soil treated
with corn straw biochar were both lower than that of the control group.

[100]
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Koltowski et al. [122] studied the removal effect of PAHs in soil by microwave, CO2, and H2O
activation of willow biochar. The results showed that the biochar samples with the best effect after
activation reduced the concentration of PAHs dissolved in the coal plant soil (near cooking plant
battery) and bitumen plant soil from 153 to 22 ng/L and 174 to 24 ng/L, respectively, and the PAHs
concentration decreased by 86%. The concentration of PAHs dissolved in the asphalt soil (from an
industrial waste deposit) decreased from 52 to 16 ng/L, and bioacceptable PAHs reduced to almost
zero. Zhang et al. [123] applied biochar from corn straw and pig manure to black soil containing
thiacloprid, and explored the adsorption and degradation process of thiacloprid. The results showed
that the biochar changed the microbial community of soil by changing the physicochemical properties
of the soil, thus promoting the biodegradation of thiacloprid.

In general, biochar can enhance the adsorption capacity of soil for organic pollutants, reduce
their activities of desorption and flow in the soil, and bioavailability in soil pore water, provide
essential nutrients to improve soil microbial activity, and improve soil physical and chemical
properties, etc. [124].

4.3. Amelioration of Soil

The improvement of soil by biochar is mainly reflected in the improvement of soil organic matter
content, the increase of nitrogen, potassium, and other nutrients contents and utilization rate, and the
improvement of soil erosion and acid soil.

The application of biochar can significantly increase the content of soil organic matter,
alkali-hydrolyzed nitrogen, ammonium nitrogen, and available potassium, but the more biochar
added is not better. Excessive application of biochar can inhibit the content of nutrients. Bayabil
et al. [125] mixed acacia, croton, and eucalyptus charcoal into the soil in a basin of the Ethiopian
plateau, and found through laboratory and field experiments that it had a good improvement on the
water conservancy characteristics of degraded soil, so as to reduce runoff and erosion. Biochar is
mostly alkaline, which can improve the utilization and absorption of nutrients in rice by increasing
the pH value of acid soil [126]. In addition, the effect of biochar on soil cation exchange capacity was
significant. Agegnehu et al. [127] found that biochar, compost, and their compounds significantly
improved the availability and use of plant nutrients: Soil organic carbon, moisture content, CEC, and
peanut yield all increased, and greenhouse gas emissions decreased.

Nitrogen is an essential nutrient for plant growth. The application of nitrogen fertilizer could
replenish soil nitrogen and maintain land productivity. However, over-application will cause a
large loss of soil nitrogen, reduce the efficiency and utilization of nitrogen fertilizer, and aggravate
the eutrophication pollution degree of surrounding water environment such as rivers and lakes.
The inhibition of nitrogen and phosphorus leaching by biochar is considered as follows: Biochar
changed the microbial-mediated reactions in soil nitrogen and phosphorus cycles, namely N2 fixation,
nitrogen and phosphorus mineralization, nitrification, ammonia volatilization, and denitrification.
At the same time, biochar provided a reactive surface in which nitrogen and phosphorus ions remain
in the soil microbial biomass and exchange sites, both of which regulate crop nitrogen and phosphorus
availability [128].

4.4. Potential Risk of Biochar

Although biochar has great advantages in remediation of soil pollution, improvement of soil
quality, increase of crop yield, and reduction of greenhouse gas emissions, these studies are all
short-term and the long-term effects of biochar on soil are still ambiguous. Therefore, in order to
make better use of biochar and reduce its possible risks, the long-term effects and risk assessment of
biochar on soil should be paid more attention. Studies have shown that, although the application of
biochar improved soil quality and crop yield, biochar reduced the efficacy of herbicide and increased
weed growth by 200% [129]. The reduction of herbicide efficacy must increase the use of herbicide,
which may increase the residual concentration of herbicide in the soil and cause more serious pollution
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to the soil. In addition, biochar, which is mostly prepared from crop waste, may contain heavy
metals on its own and could release pollutants if it gets into the soil. Due to the weathering and
aging, biochar would undergo physical, chemical, and biological degradation. Finally, it would form
colloids, nanoparticles, and smaller fragments that alter the microbial community in the soil. However,
the interaction between these components of biochar and soil, the internal mechanism of microbial
transformation and geochemical circulation still need to be further studied [130].

5. Conclusions

In this paper, the effects of preparation, process parameters, and modification of biochar on its
physicochemical properties were reviewed. The mechanism of biochar remediation for soil pollution
was summarized, the application status of biochar in soil remediation was analyzed, and the research
articles on the removal of heavy metals and organic pollutants by biochar in the past two years
were listed; lastly, the possible risks in the application of biochar were proposed. The application
of biochar in soil remediation can not only reduce the damage of soil wastes to the atmosphere and
water environment, but also remove the pollutants in the soil and improve the soil quality. In addition,
biochar has advantages in dealing with water pollution and reducing greenhouse gas emissions, so the
research on the application of biochar is of great significance to sustainable development.

At present, the following problems still exist in the application of biochar: (i) Although studies are
on the same type of biochar to repair the same kind of pollution, the mechanism of action, adsorption
kinetics, thermodynamics, etc., are different; (ii) in terms of the characterization of biochar, there
is no unified standard, which is difficult to compare; (iii) the number of indoor tests is much more
than of field outdoor tests, which results in the incomplete considered factors and difficult practical
application; (iv) the research on the mechanism of biochar on compound pollution is not thorough
enough; (v) the study on the long-term effects and negative effects of biochar is not well studied; and
(vi) there is little research about life cycle assessment of biochar and the overall economic value of
biochar applications is not clearly enough.
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