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The total global food demand is expected to increase up to 50% 

between 2010 and 2050; hence, there is a clear need to increase plant 

productivity with little or no damage to the environment. In this respect, 

biochar is a carbon-rich material derived from the pyrolysis of organic 

matter at high temperatures with a limited oxygen supply, with different 

physicochemical characteristics that depend on the feedstock and 

pyrolysis conditions. When used as a soil amendment, it has shown many 

positive environmental effects such as carbon sequestration, reduction of 

greenhouse gas emissions, and soil improvement. Biochar application has 

also shown huge benefits when applied to agri-systems, among them, the 

improvement of plant growth either in optimal conditions or under abiotic 

or biotic stress. Several mechanisms, such as enhancing the soil microbial 

diversity and thus increasing soil nutrient-cycling functions, improving 

soil physicochemical properties, stimulating the microbial colonization, 

or increasing soil P, K, or N content, have been described to exert these 

positive effects on plant growth, either alone or in combination with 

other resources. In addition, it can also improve the plant antioxidant 

defenses, an evident advantage for plant growth under stress conditions. 

Although agricultural residues are generated from a wide variety of crops, 

cereals account for more than half of the world’s harvested area. Yet, in 

this review, we will focus on biochar obtained from residues of the most 

common and relevant cereal crops in terms of global production (rice, 

wheat, maize, and barley) and in their use as recycled residues to stimulate 

plant growth. The harvesting and processing of these crops generate a 

vast number and variety of residues that could be  locally recycled into 

valuable products such as biochar, reducing the waste management 

problem and accomplishing the circular economy premise. However, very 

scarce literature focused on the use of biochar from a crop to improve its 

own growth is available. Herein, we present an overview of the literature 

focused on this topic, compiling most of the studies and discussing the 

urgent need to deepen into the molecular mechanisms and pathways 

involved in the beneficial effects of biochar on plant productivity.
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Introduction

The world’s population increases day by day and is expected 
to reach between 9.4 and 10.1 billion by 2050 (United Nations, 
Department of Economic and Social Affairs, Population Division, 
2019). Similarly, the total global food demand is expected to 
increase by 35%–56% between 2010 and 2050 (van Dijk et al., 
2021), requiring new means of improving agricultural production 
to ensure the food supply.

Biochar is a carbon-rich material derived from the pyrolysis 
of organic matter at high temperature with a limited oxygen 
supply (Lehmann and Joseph, 2009). This process transforms the 
organic material into variable fractions of solid (biochar), liquid 
(bio-oil), and gas (syngas) products. The beneficial effect of 
biochar or charcoal amendments on soil fertility was first 
described on the black-earth-like anthropogenic amazon soils 
known as Terra Preta (reviewed in Glaser, 2014) derived from 
soils enriched with black carbon (C) from incompletely burned 
residues. These soils had enhanced fertility attributed to higher 
water and nutrient holding capacity, higher pH values, and higher 
levels of organic matter and nutrients such as potassium (K), 
calcium (Ca), phosphorous (P), or nitrogen (N; Glaser et al., 2001).

Biochar production depends on the feedstock, heating rate, final 
temperature, and residence time used, among other parameters. 
Different thermal treatments can be carried out, including slow and 
fast pyrolysis, gasification, or torrefaction. However, high-yield and 
high-quality biochar can be generally obtained with a residence time 
of a few hours at temperatures around 400°C (Wang D. et al., 2020). 
Their environmental and health implications need to be analyzed 
in-depth in order to extend the use of a given biochar, as it can 
remain in the soil for hundreds of years (Kamali et al., 2022). Some 
of the problems associated with the use of biochar include the 
crystallization of organic matter due to high temperatures or the 
release of heavy metals and aromatic organic compounds, issues that 
are currently being addressed (Kamali et al., 2022). In this respect, 
the European Biochar Certificate (EBC) is an international secure 
control and assessment system that provides guidelines [European 
Biochar Certificate (EBC), 2012–2022] for sustainable biochar 
production, processing, and sale, providing customers and producers 
with a reliable quality standard. It includes limit values for heavy 
metals and other potential contaminants such as polychlorinated 
dibenzo-p-dioxins, furans, or polycyclic aromatic hydrocarbons, and 
it is updated on a regular basis to align with the ongoing development 
of relevant European legislation and scientific advances. Moreover, 
according to EBC, the feedstock used for biochar production must 
be free of non-organic residues, such as plastic or scrap metal, and 
must be  free of organic pollutants, such as paints or solvents 
(European Biochar Certificate (EBC), (2012–2022)). In addition, and 
according to the International Biochar Initiative (IBI), the feedstock 
used should be thoroughly described, specifying for example the 
composition of the material or whether it was processed or not 
[International Biochar Initiative (IBI), 2015].

The physicochemical characteristics of biochar are mainly 
dependent on the feedstock and the pyrolysis conditions used 

(Yakout, 2017; Chandra and Bhattacharya, 2019). Fixed carbon, 
recalcitrance, hydrophobicity, aromaticity, pH level, and specific 
surface area tend to increase with increasing pyrolysis temperature 
(Enders et al., 2012; Kloss et al., 2012; Angin, 2013; Gai et al., 2014; 
Jassal et al., 2015; Cheng et al., 2017), while biochar yield, electrical 
conductivity, cation exchange capacity, and N, hydrogen (H) and 
oxygen (O) content, decrease (Gai et al., 2014; Cheng et al., 2017).

The application of biochar can benefit the agricultural sector 
in many ways, as reviewed in Allohverdi et al. (2021). Biochar can 
improve the stability and water holding capacity of soils (Basso 
et al., 2013), modify and control microbial soil populations (Bai 
et al., 2019; Kamau et al., 2019; Chew et al., 2020), and reduce the 
need for fertilizer as well as fertilizer leaching (Zhang et al., 2021; 
Zhou et al., 2021). It can also help to ameliorate drought (Yoo 
et al., 2020), salinity (Liang et al., 2021), and heat stress (Fahad 
et al., 2016) effects. In addition, it can also protect plants against 
pathogens (reviewed in Poveda et  al., 2021). All these factors 
should contribute to increased crop production. Aside from 
agriculture, the incorporation of biochar as a soil amendment has 
other beneficial environmental effects, e.g., removing inorganic 
contaminants from soils and water, such as pharmaceuticals (Jung 
et al., 2015; Du et al., 2021), heavy metals, or pesticides (Cao et al., 
2011; Ali et  al., 2019); carbon sequestration and reduction of 
greenhouse gas emissions (Bi et al., 2019; Ginebra et al., 2022) or 
energy production (reviewed in Bhatia et al., 2021), among others.

Biochar from many different sources has been shown to 
be effective in improving plant growth or productivity, either from 
agriculture and forestry residues or from animal/human/farming 
wastes. Some of the non-agricultural residues used are sewage 
sludge (Chu et al., 2020), municipal solid waste (Bonanomi et al., 
2017), poultry litter (Masud et al., 2020), manure pellet (Pokharel 
and Chang, 2019), or residues from the brewery industry 
(Manolikaki and Diamadopoulos, 2020). The forestry residues used 
are mainly wood (Tartaglia et al., 2020), sawdust (Bonanomi et al., 
2020), and paper fiber (Prasad et al., 2018). Although agricultural 
residues are generated from a wide variety of crops, in this review, 
we  will focus on biochar obtained from residues of the most 
common and relevant cereal crops in terms of global production 
(rice, wheat, maize, and barley) and their use as recycled wastes to 
stimulate plant growth. However, it is important to mention that 
biochar prepared from other crops, such as peanut (Wu et  al., 
2019), walnut (Khorram et al., 2018), bamboo (Wang et al., 2019b), 
cotton (Zhang Z. et  al., 2020), sugarcane (Kumar et  al., 2021), 
tomato (Monterumici et al., 2015), coconut (Zhao et al., 2019), 
soybean (Zheng et al., 2019), etc., are also reported in the literature.

Diverse mechanisms have been described to promote plant 
growth, including the increase in nutrient availability and uptake 
(Zhao et al., 2019; Xi et al., 2020; Cui et al., 2021; You et al., 2021), 
improved soil physicochemical properties (Huang et al., 2019; Liu 
et al., 2019), changes in the soil microbial populations (Hansen 
et al., 2017; Zheng et al., 2018), or changes in gene expression 
patterns which may influence plant growth (Jaiswal et al., 2020; 
Mehmood et  al., 2020; Figure  1). All these mechanisms will 
be further explored in the next sections.
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Hence, biochar production represents a potential way of 
transforming residues into valuable products, reducing their waste 
management problem, and meeting the premise of the circular 
economy. As mentioned above, in this article, we will focus on the 
available literature on biochar produced from residues of the main 
cereal crops (maize, rice, wheat, and barley), and its effect on plant 
growth promotion, as cereals are the most produced and traded 
commodity in the world and account for more than half of the 
world’s harvested area [Food and Agriculture Organization of the 
United Nations (FAO), 2021a]. This type of feedstock (i.e., 
residues) is not in competition with land for food or feed 
production, which could be a relevant factor if the deployment of 
biochar strategies increases.

Effects of biochar from major 
cereal crops on plant growth

The use of biochar to stimulate or improve crop production 
has a great potential for the development of minimal residue 
circular economies in which the biochar produced is applied on 
the same crop that was used as feedstock. For this reason, 
we reviewed the current available studies of biochar made from 

residues of cereal crops with a high impact in terms of production 
within the agri-food system. The main residues used to produce 
biochar from cereals are husk and straw, which have been reported 
to stimulate plant growth either in optimal conditions or under 
abiotic/biotic stress. Herein, we made an overview of the available 
literature on this topic, compiling all the studies in Table 1 and on 
a meta-analysis represented in Figures 1A and 1B. It is important 
to mention that the impact of biochar application on abiotic/biotic 
stress is not considered as the focus of this review, although the 
cases where positive effects on plant growth were described 
are mentioned.

Biochar from rice

Rice (Oryza spp.) is one of the most important crops in the 
world and the primary food source for more than half of the 
world’s population. With 0.8 billion tons, rice accounts for 8% of 
global production of the primary crops, being the third after 
sugarcane and maize. Rice production is led by Asia, with 90% of 
the total global production [Food and Agriculture Organization 
of the United Nations (FAO), 2021a]. It is widely cultivated in 
South Asia, China, Thailand, Japan, and Korea and provides up to 

A

B

C

FIGURE 1

Meta-analyses of publications included in this review and general graphical abstract. (A) Percentage of publications on the use of biochar from 
each cereal (rice, wheat, maize, and barley) to stimulate plant growth. (B) Classification of the same publications according to the type of 
experiments performed with the different biochars. (C) Diagram representing the described effects that could influence plant growth after rice, 
wheat, maize, or barley biochar application.
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TABLE 1 Compilation of the most relevant studies regarding biochar production from four main cereal crops (rice, wheat, maize, and barley) and 
their effects on plant growth.

Biochar Plant system

ReferencesOrigin 
(feedstock)

Application 
rate

Production 
method

Combined 
with Crop Growth 

conditions Stress
Mechanism of 
action to stimulate 
plant growth

Rice biochar
Rice husk and shell 
of cotton seed

5% (w/w) Pyrolysis (400°C) - Tomato Greenhouse, 
pots

Water stress Increased soil moisture 
content

Akhtar et al., 
2014

Rice straw 5% (w/w) Pyrolysis (500°C, 
4 h)

- Rape (Brassica 
campestris)

Greenhouse - Increased soil pH, CEC 
and total C and N. 
Changes in the 
microbial community

Xu et al., 2014

Rice husks 2.5% (w/w) Gasification 
(900°C–1,100°C)

- Rice Growth 
chamber

Heat stress Improved water status Fahad et al., 
2016

Rice hull 0, 1, 2, and 5% 
(w/w)

Pyrolysis (500°C) - Maize Growth 
chamber, pots

Salt stress Increased stability of 
water-stable aggregates 
and P and K soil 
content

Kim et al., 2016

Rice straw 2.5% (w/w) Pyrolysis (400°C) - Ryegrass Field - Increased soil available 
P and K

Zhang et al., 
2017

Rice husks 20 t ha−1 Pyrolysis (600°C, 
3 h)

- Rice Field - Increased N uptake 
and N use efficiency

Huang et al., 
2018

Rice straw 3% Not indicated Inorganic-
phosphate-
solubilizing 
bacteria

Rape (Brassica 
napus)

Field - Increased P uptake Zheng et al., 
2018

Rice straw 0, 2.25 and 
11.3 Mg ha−1

Pyrolysis (500°C, 
8 h)

- Rice-wheat 
rotation

Field, PVC 
columns

- Probable release of 
plant macro- and 
micronutrients from 
biochar

Bi et al., 2019

Rice straw 2, 5, 10% 
(w/w)

Pyrolysis 
(450°C–550°C)

Dredged 
sediments

Phragmites 
communis

Sunshine-
permeable 
room

- Increased N and P 
uptake. Improved soil 
water content and 
photosynthetic rate

Huang et al., 
2019

Rice husks 21 g kg−1 Pyrolysis 
(350°C–400°C, 
15 min)

Bacillus 
pumilus

Rice Greenhouse - Increased soil total C, 
C/N ratio, 
exchangeable K+, 
chlorophyll content 
and nutrient uptake.

Win et al., 2019

Rice husks 1–5% (w/w) in 
water

Pyrolysis (400°C, 
30 min) and liquid 
extraction with 
methanol

- Rice Growth 
chanber, 
beakers

- Increase gene and 
protein expression of 
ABP1

Yang et al., 2019

Rice straw 0%, 1%, and 
2%

Pyrolysis (400°C, 
2 h)

Phosphorus 
fertilizer

Maize Greenhouse - Increased P availability 
and soil pH.
Decreased soil 
exchangeable Al3+

Baquy et al., 
2020

Rice straw 3% Pyrolysis (450°C, 
2 h)

Chitosan Soybean Growth 
chamber

Salt stress Activation of 
antioxidant protection 
systems, genetic 
upregulation, reduced 
ROS generation and 
osmolyte development.
Increased nutrient 
uptake and 
chlorophyll, soluble 
proteins and sugar 
contents.

Mehmood et al., 
2020

Rice straw 2.8 t ha−1 Pyrolysis (500°C, 
2 h)

- Rice Field - Changes in the 
microbial community. 
Increased total N 
content and soil 
available K and Mg

Nan et al., 2020

(Continued)
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TABLE 1 Continued

Biochar Plant system

ReferencesOrigin 
(feedstock)

Application 
rate

Production 
method

Combined 
with Crop Growth 

conditions Stress
Mechanism of 
action to stimulate 
plant growth

Rice straw 2% (w/w) Pyrolysis (400, 
800°C)

- Leaf-used 
lettuce

Growth 
chamber

- Increased soil available 
N and K, reduced Fe2+ 
and Al2+

Xi et al., 2020

Rice straw 7.5 t ha−1 Pyrolysis (450°C, 
6 h)

Bare urea and 
controlled-
release urea

Rice Field - Increase N uptake and 
N use efficiency

Zheng et al., 
2020

Rice straw 15 t ha−1 Not indicated Jasmonic acid Faba bean Greenhouse, 
pots

Salt stress Reduced oxidative 
damage to leaf tissues 
and maintenance of 
the integrity of cell 
membranes

El Nahhas et al., 
2021

Rice straw 0, 30, 60, and 
90 kg fed−1

Pyrolysis (500°C, 
30 min)

- Faba bean Field - Not indicated. Essa et al., 2021

Rice husks and 
maize stalk (1:1)

10 t ha−1 Pyrolysis (350°C, 
3 h)

Glycine 
betaine

Rice Field - Improved activity of 
CAT, APX and POX

Hafez et al., 
2021a

Rice husks and 
maize stalk (1:1)

10 t ha−1 Pyrolysis (350°C, 
3 h)

Vermicompost Wheat Field Salt and water 
stress

Increased chlorophyll, 
proline and carotenoid 
content; increased 
relative water content 
and N, P and K uptake; 
and increased 
expression of CAT and 
APX

Hafez et al., 
2021b

Rice straw 1.0% (w/w) Pyrolysis (450°C, 
2 h)

N fertilizer Rice Pots - Increased N use 
efficiency

Liu Z. et al., 2021

Rice husks and 
maize stalk (1:1)

10 t ha−1 Pyrolysis (350°C, 
3 h)

(PGPR; 
Azotobacter 
chroococcum 
SARS 10 and 
Pseudomonas 
koreensis 
MG209738)

Maize Field Salt stress Reduced soil salinity 
and induced 
photosynthetic 
pigments and 
photosynthesis process

Nehela et al., 
2021

Rice straw and 
waste wood

4 t ha−1 Pyrolysis (600°C, 
90 min)

N-enrichment Rice Field - Increased levels of soil 
C and N; increased 
nutrient retention; 
increased Fe 
availability

Yin et al., 2021

Rice husks 2.5, 5, and 
7.5 t ha−1

Modified biochar 
kiln (350°C)

- Tomato Greenhouse, 
pots

- Improved soil 
physicochemical 
properties

Adebajo et al., 
2022

Rice straw 4.25 g kg−1 Pyrolysis (500°C, 
5 h)

Rice straw, 
farmyard 
manure and 
mineral 
fertilizer

Zucchini 
(Cucurbite 
pepo cultivar 
Jamila F1)

Greenhouse, 
pots

- Improved soil 
characteristics and 
increased nutrient 
availability

Farid et al., 2022

Rice hull 1 t ha−1 Pyrolysis (500°C) Plant growth-
promoting 
bacteria 
(Bacillus spp.)

Radix 
pseudostellariae

Field Biotic stress 
(replant 
disease)

Changed rhizosphere 
soil metabolites and 
stimulated 
proliferation of 
beneficial 
microorganisms

Wu et al., 2022

Rice husk 0, 5, 20, and 
80 g kg−1

Pyrolysis (450°C, 
3 h)

- Chinese crab 
apple (Malus 
hupehensis 
Rehd)

Field, pots Biotic stress 
(Fusarium 
solani, replant 
disease)

Increased activity of 
soil enzymes and 
decreased abundance 
of Fusarium solani

Wang et al., 
2019a

(Continued)
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TABLE 1 Continued

Biochar Plant system

ReferencesOrigin 
(feedstock)

Application 
rate

Production 
method

Combined 
with Crop Growth 

conditions Stress
Mechanism of 
action to stimulate 
plant growth

Rice husk 3% (w/w) Pyrolysis (450°C) Biocontrol 
agents 
(Bacillus 
subtilis, 
Trichoderma 
harzianum)

Tomato Greenhouse, 
pots

Biotic stress 
(Meloidogyne 
incognita)

Increased expression of 
defense related genes 
(PR-1b, JERF3)

Arshad et al., 
2021

Wheat biochar
Wheat straw 20–40 t ha−1 Pyrolysis (450°C) - Maize Field - Increased N uptake Zhang et al., 

2016
Wheat straw 16 t ha−1 Gasification (700–

750°C)
- Rotation: 

wheat and 
oilseed rape

Field - Increased the bacteria 
and protist populations 
in soil

Hansen et al., 
2017

Wheat straw 10% (w/w) Pyrolysis (550°C) - Barley Growth 
chamber

- Increased P uptake Shepherd et al., 
2017

Peanut shell and 
wheat straw (1:1, 
v/v)

0.5–10% (v/v) Pyrolysis (500°C) - Different wild 
species

Field - Enhanced soil 
biodiversity and 
nutrient-cycling 
functions

Chen et al., 2018

Wheat straw 5 t ha−1 Pyrolysis (600°C, 
3 h)

- Lentil Field - Increased the organic 
C content and 
improved other soil 
physicochemical 
properties

Khorram et al., 
2018

Wheat straw 8% Pyrolysis 
(350°C–550°C)

- Tomato Greenhouse, 
pots

Salt stress Na+ ions adsorption, 
and release of K+, Ca+2 
and Mg+2

She et al., 2018

Wheat straw 1 t ha−1 Pyrolysis (500–
600°C)

- Wheat and 
rice

Field - Improved soil 
aggregation and fungal 
community structure

Bai et al., 2019

Wheat straw 2% (w/w) Pyrolysis (500°C, 
4 h)

- Wheat Greenhouse, 
pots

- Reduced herbicide 
formesan uptake and 
increased microbial 
diversity

Meng et al., 
2019

Wheat trash 1% (w/w) Pyrolysis (450–
480°C)

- Wheat and 
subterranean 
clover

Greenhouse, 
pots

P deficiency Stimulated mycorrhizal 
colonization, leading 
to increased P uptake

Solaiman et al., 
2019

Wheat straw 1% (w/w) Pyrolysis (350°C, 
30 min)

Compost and 
biogas slurry

Maize Greenhouse, 
pots

- Increased P, K, N and 
microbial biomass in 
soil

Abbas et al., 
2020

Wheat straw 0.25% (w/w) Pyrolysis (400°C, 
30 min)

- Rice Greenhouse, 
pots

- Increased root 
membrane potential 
resulting in an 
increased nutrient 
uptake. Increased 
microbial soil diversity

Chew et al., 
2020

Wheat straw 20–40 t ha−1 Pyrolysis (450°C) Ammonium 
nitrate 
(NH4NO3)

Pecan Greenhouse - Increased N and 
enzyme activities in 
soil

Hou et al., 2020

Wheat straw 0,5% (w/w) Pyrolysis (500°C) - Rice Greenhouse, 
pots

- Increased N soil 
content

Lu et al., 2020

Wheat straw 15 g kg−1 Pyrolysis (300°C, 
2 h)

- Maize Rhizoboxes - Fine root proliferation 
and increased N and P 
in soil

Song et al., 2020

Wheat straw 5–10 g kg−1 Pyrolysis (550°C) - Soybean Greenhouse, 
pots

Salt and water 
stress

Increased N soil 
content

Zhang et al., 
2020

Wheat straw 8 t ha−1 Not indicated - Rotation: 
wheat and 
maize

Field - Increased soil N 
content and microbial 
biomass

Hu et al., 2021

(Continued)
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TABLE 1 Continued

Biochar Plant system

ReferencesOrigin 
(feedstock)

Application 
rate

Production 
method

Combined 
with Crop Growth 

conditions Stress
Mechanism of 
action to stimulate 
plant growth

Wheat straw 10% (v/v) Pyrolysis (750°C, 
8 h)

- Wheat Greenhouse - Not indicated Latini et al., 
2021

Wheat straw 20 t ha−1 Pyrolysis (550–
600°C, 4 h)

- Rice Field - Increased N uptake 
and N use efficiency

Liu Y. et al., 2021

Mixed softwood 
and wheat straw

2% (w/w) Pyrolysis (550°C) - Tobacco Greenhouse, 
pots

Water stress Improved soil hydro-
physical properties

Liu X. et al., 2021

Wheat straw 2% (w/w) Pyrolysis (500°C) - Tomato Greenhouse Biotic stress 
(Ralstonia 
solanacearum)

Increased N and P 
uptake

Tian et al., 2021

Wheat straw 2% (w/w) Pyrolysis (400°C, 
30 min)

- Rice Greenhouse - Increased N, P, K and 
Fe uptake

Chew et al., 
2022

Wheat straw 20 t ha−1 Pyrolysis (450°C) - Rice Field - Increased N and P 
uptake

Liu M. et al., 2022

Wheat straw 2% (w/w) Pyrolysis (550°C) - Tobacco Greenhouse - Increased P and K 
uptake

Liu X. et al., 2022

Maize biochar
Maize stover - Pyrolysis (450°C) Bacillus 

mucilaginosus
- - - Increased K uptake Liu et al., 2017

Maize cob 1% (w/w) Pyrolysis (350°C) - Quinoa Greenhouse, 
pots

Salt and water 
stress

Improved the plant 
antioxidant defense 
machinery and 
enhanced nutrient 
uptake

Ramzani et al., 
2017

Maize cob and 
straw

2.5% (w/w) Pyrolysis (400°C) - Ryegrass Field - Increased P and K 
uptake

Zhang et al., 
2017

Maize straw 1% Pyrolysis (500°C, 
2 h)

- Rice Field - Increased soil P and Fe 
content by increasing 
Fe-reducing bacteria 
and phosphate-
solubilizing bacteria

Xu et al., 2019

Maize straw 15.75–
31.5 t ha−1

Pyrolysis (500°C) - Soybean and 
maize

Field - Improved soil 
aggregation and 
increased SOC content

Jin et al., 2020

Maize straw 9 kg m−2 Pyrolysis (500°C, 
2 h)

- Soybean Field - Increased SOC content Li et al., 2020

Maize stalk 13.3 g/kg Pyrolysis (400°C, 
1.5 h)

- Pepper Greenhouse Biotic stress 
(Phytophthora 
capsici)

Increased soil organic 
matter, and N, P and K 
content

Wang G. et al., 
2020

Maize 2–4% (w/w) Pyrolysis (600°C, 
30 min)

- Licorice Growth 
chamber

Salt stress Increased soil-
microbial enzymatic 
activity and enhanced 
nutrient uptake

Egamberdieva 
et al., 2021

Maize straw 20–50 t ha−1 Pyrolysis (500–
600°C)

- Maize Field - Increased soil moisture 
and N uptake

Feng et al., 2021

Maize residue Water extracts 
(0.01–0.1%)

Pyrolysis (450°C) - Rice Hydroponic 
culture

- Contribution of low 
molecular weight 
organic acids

Liu M. et al., 2021

Maize straw 5% (v/v) Pyrolysis (350–
500°C, 1 h)

- Maize Greenhouse Salt and water 
stress

Improved antioxidant 
defense machinery in 
plant and enhanced 
nutrient uptake

Ndiate et al., 2021

Maize seeds 2% (w/v) Pyrolysis (600°C, 
30 min)

Bacteria: 
Klebsiella sp.
Fungi: 
Talaromyces 
calidicanius 
and T. 
purpureogenus

Lettuce Greenhouse - Supply of N, P and 
IAA from microbial 
inoculants

Ma et al., 2022
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https://doi.org/10.3389/fpls.2022.912264
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martínez-Gómez et al. 10.3389/fpls.2022.912264

Frontiers in Plant Science 08 frontiersin.org

76% of the caloric intake of people in Southeast Asia (Fitzgerald 
et al., 2009).

Rice processing generates different types of solid waste, the 
main ones being straw, husk, ash, bran, and broken rice. Rice 
straw accounts for 50% of the dry weight of rice; it is separated 
from the grain during harvest and is usually left or burned in 
the open field, wasting what could be a valuable resource for 
energy generation, ethanol production, animal feed, or stable 
litter. Rice husk is a protective layer on the grain (around 20% 
of the grain’s weight). Unlike straw, rice husk is not appropriate 
for animal feeding, but it can be  used for power or ethanol 
production and as poultry litter (Moraes et  al., 2014). Both 
residues have shown great potential for biochar production, 
being the two most used rice by-products. The pyrolysis 
temperature and residency time for biochar production in most 
studies usually vary from 30 min to 8 h at 400°C–800°C for rice 
straw and from 15 min to 3 h at 350°C–1100°C for rice husk (see 
Table 1). The product yield is highly dependent on the type of 
reaction and the temperature used, among other factors. As one 
example, for rice residues with reaction temperatures between 
300°C and 800°C, biochar yield is around 36%–65%, while 
syngas and bio-oil yields are 12%–45% and 22%–45%, 
respectively (Dunnigan et al., 2018; Fermanelli et al., 2020; Su 
et al., 2020; Bhatnagar et al., 2022).

The application of rice-derived biochar has shown 
promising results improving plant growth and plant productivity 
(Table 1; Figure 1). Rice straw pyrolyzed at 400°C and applied 
at 2.5% (w/w) increased P and K availability and showed a 
positive correlation between ryegrass biomass increase and 
available K (Zhang et al., 2017). Similar results were obtained by 
Xi et  al. (2020), where 2% (w/w) rice biochar application 
increased soil available N and K, resulting in taller lettuce 
plants, with longer roots, stronger leaves and stems, as well as 
greater leaf area. Tomato height, weight, number of flowers, and 
fruit yield were also improved after 7.5 t ha−1 rice husk 
application (Adebajo et  al., 2022), and similar results were 
obtained in faba bean varieties with higher grain yield, fruit 
protein content, and plant height (Essa et al., 2021). In both 

cases, the growth improvement may be related to the impact of 
biochar on the physicochemical characteristics of the soils. 
Similarly, Huang et al. (2019) proposed that rice straw biochar 
contributed to the increase of total soil N content, making it 
more available to Phragmites communis and promoting its 
growth. But rice biochar can also stimulate C and N cycling by 
changing the microbial community. For example, increased rape 
shoot biomass (from 2.31 to 4.23 g) after rice biochar application 
was the result of an improvement of soil chemical conditions 
(soil pH and cation exchange capacity) and nutrient availability 
(total C and N), together with changes in the associated 
microbiota (Xu et al., 2014).

Rice straw or rice husk biochar has also been used in 
combination with a variety of other resources such as bacteria, 
inorganic fertilizers, vermicompost, or dredged sediments 
(Table 1; Figure 1). For example, Zheng et al. (2018) used biochar 
as an inoculum carrier for inorganic-phosphate-solubilizing 
bacteria (iPSB), providing a protective environment for the 
survival and growth of the iPSB community within the biochar 
pores, which consequently resulted in increased N availability, P 
uptake, and rape growth promotion. To study the mechanisms 
behind the increase in soil P availability due to biochar, Baquy et al. 
(2020) tested rice straw biochar combined with a P fertilizer 
(100 mg P kg−1) in two different soils, resulting in a significant 
increase of weight, P uptake and P recovery of maize plants in 2% 
biochar-amended soils. This increase in dry weight was due to an 
increased P availability, soil pH, and decreased soil exchangeable 
Al3+. The proposed mechanism responsible for these effects was 
that functional groups on the biochar surface can compete with 
soil PO43− to form complexes with Fe and Al, thereby increasing 
soil P availability and decreasing exchangeable Al3+ (and its 
associated toxicity). Farid et al. (2022) also described the use of 
co-composted biochar (70% rice straw, 15% farmyard manure, 
10% rice straw biochar, and 5% mineral fertilizer) to improve 
zucchini growth. The co-composted biochar improved plant 
height, chlorophyll content, and dry weight, which could be the 
result of changes in soil characteristics and increased nutrient 
availability. Moreover, mixed application of biochar and fertilizers 

TABLE 1 Continued

Biochar Plant system

ReferencesOrigin 
(feedstock)

Application 
rate

Production 
method

Combined 
with Crop Growth 

conditions Stress
Mechanism of 
action to stimulate 
plant growth

Maize straw 2% (w/v) Pyrolysis (400°C) - Maize Greenhouse - Increased N uptake Xia et al., 2022
Barley biochar
Barley straw 10 t ha−1 Pyrolysis (400°C, 

1 h)
Inorganic 
fertilizer

Chinese 
cabbage

Field - Increased N, P and K 
uptake

Kang et al., 2018

Barley straw 20 t ha−1 Pyrolysis (400°C) Inorganic 
fertilizer

Rice Field - Improved soil physical 
properties and 
increased soil chemical 
contents

Kang et al., 2019

Details on biochar characteristics as plant and waste origin, application rate, and production method are given in left columns. Crop description, details on growth conditions and 
mechanisms of action described to stimulate plant growth are given in columns on the right. In bold, those studies where biochar from a crop was used for its own growth.

https://doi.org/10.3389/fpls.2022.912264
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martínez-Gómez et al. 10.3389/fpls.2022.912264

Frontiers in Plant Science 09 frontiersin.org

could be used to accelerate the restoration of ecosystems. In this 
respect, Huang et al. (2019) used rice straw biochar alone and with 
dredged sediments, where a combined application of 50% dredged 
sediments and 5% straw biochar led to a higher P. communis 
growth rate than the control with only biochar or sediments 
separately. In general, the addition of dredged sediments increased 
soil organic C (SOC) while biochar preferentially increased soil 
P. However, the combination of both improved the physicochemical 
properties of the soil and altered the rhizosphere microbial 
community abundance; hence, this method was proposed for the 
improvement of urban river revetment ecosystems.

Rice straw or rice husk biochar has been proved to be effective 
in fostering plant tolerance to abiotic stress (Table 1; Figure 1). In 
this respect, Nehela et  al. (2021) used a combination of plant 
growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum 
SARS 10 and Pseudomonas koreensis MG209738) and biochar to 
alleviate the negative effect of salt stress. This combined application 
led to higher values of several physicochemical parameters such 
as chlorophyll, carotenoids, soluble sugars, and relative water 
content, as well as higher nutrient content (K, N, and P) resulting 
in improved grain and stover yield of maize plants. A significant 
increase in the plant water status and tomato fruit yield was also 
observed by Akhtar et al. (2014) under different irrigation regimes 
after the application of 5% (w/w) biochar made from rice husk and 
shell of cotton seeds. In line with this, El Nahhas et al. (2021) 
tested the combined use of rice straw biochar (15 t ha−1) and 
exogenous jasmonic acid to alleviate the effects of salt stress on 
faba bean plants. The combined treatment enhanced the growth, 
the number of flowers, and productivity of salt-stressed plants, as 
well as their water status and photosynthetic pigments. These 
results were associated with the maintenance of the integrity of 
cell membranes and the reduction of the oxidative damage of leaf 
tissues by enhancing catalase (CAT), peroxidase (POX), 
superoxide dismutase (SOD), and glutathione reductase (GR) 
activities. In agreement with this, Kim et al. (2016) applied rice 
husk biochar to reclaimed tidal land soil, which often contains 
high levels of soluble salts and exchangeable Na. It increased the 
soil nutrient content and promoted plant growth since maize dry 
weight was 101% higher under 5% biochar than the control. The 
decrease in maize salt stress was attributed to a high K content in 
the biochar that hindered maize sodium (Na) uptake through 
competition. Interestingly, K content in the maize tissue was 14% 
higher than the control, and the decrease in Na tissue content 
influenced the activity of ascorbate peroxidase (APX) and GR, 
both genes associated with the amelioration of oxidative stress. A 
similar upregulation of genes involved in mitigating oxidative 
stress was found after the application of a mixture of rice biochar 
and vermicompost to minimize the effects of soil salinity and 
water stress on wheat plants. This treatment increased chlorophyll, 
proline and carotenoid content, N, P and K uptake, and relative 
water content of wheat plants grown under water stress (50%–75% 
field capacity) in a saline sodic soil. Vermicompost + biochar also 
increased the expression levels of CAT and APX genes, decreasing 
oxidative stress (Hafez et al., 2021b). Chitosan-modified biochar 

(CMB) was also effective relieving soybean from salt stress (NaCl 
40 mM and 80 mM), as the root length of soybean plants was 
significantly increased (29% and 31%, respectively) after the 
application of unmodified biochar (UM), and it was further 
increased when using CMB (56% and 80%, respectively; 
Mehmood et al., 2020). Different mechanisms were proposed to 
explain the stimulation of plant growth by CMB, such as increased 
nutrient uptake and increased chlorophyll, soluble proteins and 
sugar contents, which are normally reduced under salt stress. In 
addition, it promoted the upregulation of antioxidant (APX, CAT, 
SOD, and POX) and salt-tolerance genes (CHS and GmSALT3). 
Therefore, CMB minimized the effects of salinity enabling plant 
protection (Mehmood et al., 2020).

Regarding biotic stress, the application of rice hull or rice husk 
biochar has reported interesting results (Table  1; Figure  1). A 
combination of rice husk biochar and biocontrol agents (B. subtilis 
and Trichoderma harzianum) was able to enhance the biomass of 
tomato plants and reduce Meloidogyne incognita infection by 
triggering defense-related genes (PR-1b and JERF3; Arshad et al., 
2021). Rice biochar has also been helpful in alleviating the effects 
of the replanting disease (mainly caused by the accumulation of 
soil-borne pathogens; Wu et  al., 2022). In this respect, an 
application of 80 g k−1 of rice husk biochar resulted in higher root 
length, surface area, and volume of apple tree seedlings, reducing 
the negative effect of the apple replant disease, and actively 
suppressing Fusarium solani infection (Wang et al., 2019a). In a 
similar way, the combination of rice hull biochar and plant 
growth-promoting rhizobacteria led to increased leaf area and 
biomass of Radix pseudostellariae, stimulated soil beneficial 
organisms, and suppressed pathogens through the increased 
production of soil metabolites, thus alleviating the effects of the 
replanting disease (Wu et al., 2022).

The use of biochar from rice residues to 
promote its own growth

On-site rice biochar application to grow rice (Table 1; in bold; 
Figure 1) is a returning strategy that contributes in some way to 
the circular economy, and several studies have indicated its 
positive effect on rice growth and productivity.

Influence of rice biochar on soil biological and 
chemical properties, nutrient availability, and 
nutrient uptake for rice growth

The continuous application of 20 t ha−1 of rice biochar to a rice 
field resulted in plant growth promotion and an increase of 
14%–26% in soil N uptake, 7%–11% in internal N use efficiency, 
and a 6% in grain yield (Huang et al., 2018). Bi et al. (2019) showed 
an enhanced yield (up to 35%) in different rice-wheat rotated soils, 
probably due to the release of plant macronutrients and 
micronutrients contained in the rice biochar. Interestingly, biochar-
extracted liquor [1%–5% (w/w) in water] also promoted plant 
height and root growth in rice seedlings. The mechanism of action 
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proposed was based on the overexpression of the ABP1 gene and 
the accumulation of its protein product. Accordingly, molecular 
modeling showed a molecule on the biochar surface that was able 
to interact with the ABP1 protein, although it was not 
experimentally proven (Yang et  al., 2019). ABP1 was formerly 
believed as an auxin binding protein with main roles in 
embryogenesis and postembryonic shoot and root development. 
However, more recent discoveries showed that abp1-null mutants 
were not compromised for auxin signaling or development, 
questioning the physiological significance of biochar auxin-binding 
capacity (Gelová et al., 2021). As previously described, rice biochar 
can also exert its effects on plant growth by modifying the 
microbial community of the soil (Table 1). In this respect, Nan et al. 
(2020) reported a clear improvement in soil bacterial cooperative 
relationships after treatment with rice biochar in a four-year field 
trial. The complexity of the rhizosphere bacterial community was 
enhanced, most probably due to an increase in total soil C content, 
alongside with an increased total N content and soil available K and 
magnesium (Mg), which increased rice yield up to 14.5%. Rice 
biochar has also been used in combination with other resources to 
promote rice growth. For example, Win et al. (2019) combined rice 
husk biochar with a biofertilizer (Bacillus pumilus strain TUAT-1) 
to study its influence in two rice genotypes. The biochar-only 
treatment increased soil total C, C/N ratio, exchangeable K+, 
chlorophyll content, and grain yield, and a positive combined effect 
of biochar and biofertilizer was observed for plant nutrient uptake, 
although it was genotype-dependent. Zheng et al. (2020) combined 
50% bare urea with 50% controlled-release urea and 7.5 t ha−1 of 
rice straw biochar, resulting in an increase of the yield and N 
uptake of rice by 71.5% and 91.1%, respectively, when compared to 
the biochar only treatment, and 10.2% and 7.4% when compared 
to the same treatment with no biochar. In a similar way, Yin et al. 
(2021) observed an increased rice yield (38%–41%) after the 
application of N-enriched rice straw and waste wood biochar, due 
to increased levels of soil C and N contents, as well as iron (Fe) 
availability. Liu Z. et al. (2021) combined 1.0% (w/w) rice straw 
biochar with a N-fertilizer, which enhanced the N use efficiency of 
rice plants and resulted in increased shoot and root biomass (26%–
29%) and grain yield (34%), as well as an enhanced soil 
microbial biomass.

Rice biochar to improve rice tolerance to 
abiotic stresses

Rice biochar has also been used to ameliorate abiotic 
stress in rice. In one of the very few studies available, 2.5% 
(w/w) rice husk biochar was combined with a P fertilizer. This 
combination was more effective to alleviate the effects of high 
temperature (32°C–35°C vs. a control temperature of 28°C) 
than biochar or the fertilizer alone. The main reason for this 
increase was an improvement in the plant water status (Fahad 
et  al., 2016). Moreover, the dual application of rice 
husk + maize stalk biochar and exogenous glycine betaine 
significantly enhanced the growth, physiology, productivity, 
grain quality, and osmotic stress tolerance of rice plants, as 

well as nutrient uptake and soil properties, probably due to 
the activation of the enzymatic antioxidant machinery, i.e., 
improved activity of antioxidant enzymes including CAT, 
APX, and POX (Hafez et al., 2021a).

Biochar from wheat

Wheat (Triticum spp.) is one of the first domesticated food 
crops, being for 8,000 years the main food supply for the major 
civilizations of Europe, West Asia and North Africa. Nowadays, it 
is still one of the most widely grown cereals worldwide (more than 
219 million ha), being a primary source of nutrients for around 
40% of the world’s population. Moreover, as a consequence of its 
agronomic adaptability, simple storage, and easy conversion of 
grain into flour, its world trade is greater than for all other crops 
combined (Giraldo et  al., 2019; Food and Agriculture 
Organization of the United Nations (FAO), 2021b).

Wheat cultivation worldwide produces different types of 
harvest wastes, mainly husks, and straw (Duque-Acevedo et al., 
2020). Throughout the 20th century, the main use of these 
wastes was as animal feed or stable litter, but other alternatives 
emerged, such as their incorporation into the field as an 
amendment by burial (Duque-Acevedo et al., 2020). In the 21st 
century, new lines of research were developed to obtain 
products derived from their cellulosic biomass, like bioethanol 
(Duque-Acevedo et al., 2020).

Wheat harvest residues have been used as raw material to 
obtain biochar, showing interesting benefits after its application in 
agricultural systems. The main raw material used for biochar 
production is wheat straw, although its pyrolysis processing varies 
from 30 min at 350°C to 8 h at 750°C for most studies (see 
Table 1). For this type of feedstock and reaction temperatures of 
300°C–700°C, biochar production is generally around 16%–47%, 
while syngas and bio-oil yields are 10%–46% and 4%–52%, 
respectively (Sanna et al., 2011; Fermanelli et al., 2020; Bhatnagar 
et al., 2022). The application of biochar from wheat straw to crops 
other than wheat has reported promising results in terms of plant 
growth and productivity (Table 1; Figure 1). For example, the 
application of up to 10% (v/v) of wheat straw biochar increased P 
uptake in barley plants in controlled conditions (Shepherd et al., 
2017), and in maize plants grown in rhizoboxes (application rate 
of 15 g kg−1), with an increased shoot biomass and N use efficiency 
due to a fine root proliferation and an increase in the amount of 
N and P in soil (Song et al., 2020). Moreover, the application of 
this type of biochar in greenhouse pots provided a higher grain 
yield for rice plants by increasing the soil N content (Lu et al., 
2020). In the field, the application of wheat straw biochar 
(5–40 t ha−1) promoted the growth of Lens culinaris (lentil) by 
increasing the organic C content and improving other 
physicochemical properties of the soil (Khorram et al., 2018), and 
it was also able to increase maize yield by 23.7% by promoting N 
uptake (Zhang et al., 2016). In addition, the application of biochar 
from wheat straw (20 t ha−1) in rice fields increased yield by 17%, 
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as a consequence of a higher N and P supply, together with an 
improvement of more than 10% in the N use efficiency (Liu 
Y. et al., 2021; Liu M. et al., 2022). The application of 2% (w/w) 
wheat straw biochar to tobacco plants grown in greenhouses 
enhanced the rhizosphere C and N stocks and P and K availability, 
but caused a negative effect on the aboveground N-pool (Liu 
X. et al., 2022). Interestingly, recent reports point to a relevant 
mechanism that contributes to the increase in rice biomass and N 
and P uptake, after treatment with wheat straw biochar (micron-
size biochar particles). Yet, a more negative electrical potential at 
the root epidermal cell layer than at the root surface is created, and 
this difference may have been the driving force for mineral 
nutrient absorption (Chew et al., 2020, 2022). Nevertheless, the 
use of biochar in promoting plant growth can also have other side 
beneficial effects for the environment. For example, the application 
of biochar from wheat straw and peanut shell (1:1, v/v) allowed 
the restoration of degraded soils such as landfill soils, by favoring 
soil biodiversity and nutrient-cycling functions (Chen et al., 2018), 
therefore improving plant productivity, species richness, 
and diversity.

Wheat straw biochar can also be used in combination with 
other resources (Table 1). In maize plants, wheat straw biochar 
together with compost and biogas slurry, significantly increased 
plant height, chlorophyll content, water use efficiency, and grain 
weight, due to an increase in P, K, N and microbial biomass in the 
soil (Abbas et al., 2020). When applied together with ammonium 
nitrate, this biochar increased N content and enzyme activities in 
the soil, improving the height, chlorophyll content, photosynthetic 
rate, and N, P, Fe, and K accumulation in Carya illinoinensis 
(pecan; Hou et al., 2020).

Under abiotic stress situations, wheat straw biochar promotes 
tolerance of different crops (Table 1; Figure 1). In this respect, an 
increased nutrient supply to plants can improve their tolerance 
against abiotic stresses, e.g., in tomato plants, wheat biochar 
amendment increased vegetative growth, yield, and quality 
parameters under saline irrigation, due to the adsorption of Na+ 
ions and the release of K+, Ca+2 and Mg+2 (She et  al., 2018). 
Similarly, the application of wheat straw biochar in soybean plants 
subjected to salinity and drought increased the N content in the 
soil, favoring plant growth (Zhang Y. et  al., 2020). Another 
mechanism through which wheat straw biochar can increase plant 
tolerance to drought is the improvement of soil hydrophysical 
properties (soil water content, bulk density, and water-holding 
capacity) reported in tobacco plants (Liu X. et al., 2021).

Regarding biotic stress (Table 1; Figure 1), the use of wheat 
biochar has also reported interesting results. In tomato, the use of 
wheat straw biochar reduced the disease incidence of bacterial wilt 
caused by Ralstonia solanacearum by up to 75%. This was due to 
an increase in the diversity and activity of rhizosphere 
microorganisms, together with alterations of the rhizosphere 
organic acid and amino acid composition. In addition, this 
increased microbial rhizosphere activity led to an increased supply 
of N and P to the plants, resulting in an increased plant biomass 
and length (Tian et al., 2021).

The use of biochar from wheat residues 
to promote its own growth

The use of wheat straw biochar in wheat crops (Table 1; in 
bold) is overall an interesting strategy in the context of a minimal-
waste circular economy. In this respect, reusing wheat residues in 
form of biochar can stimulate wheat growth, likely as a result of 
favoring the microbial diversity of the soil (Meng et al., 2019; Hu 
et al., 2021). It can also produce a significant increase in shoot and 
root biomass, probably as a consequence of a higher P uptake due 
to a stimulation of mycorrhizal root colonization (Solaiman et al., 
2019). In the field, improvements have also been reported in the 
fungal community structure of soils where wheat straw biochar 
has been applied, due to a better soil aggregation (Bai et al., 2019). 
Similarly, improvements in bacteria and protist populations, 
leading to an increase in K available for wheat plants, were also 
described following wheat biochar application (Hansen et  al., 
2017). Moreover, biochar can ameliorate the toxic effects of some 
persistent herbicides such as fomesafen. It is used to control pre- 
and post-emergent weeds in crop fields such as soybean and 
peanut. However, it is toxic to some cereals as wheat, usually used 
as a rotational crop. The use of biochar from wheat reduced the 
uptake of this herbicide in wheat, therefore decreasing its toxicity 
(Meng et al., 2019). However, specific studies should be carried 
out to adjust the herbicide doses in those complex agri-systems.

Interestingly, the agricultural benefits obtained from the use 
of wheat biochar as an amendment has led to the development of 
new products compatible with a sustainable agriculture. One of 
the recent examples is the formulation of nano-biochar particles 
with wheat straw biochar and different salts of N, P, K, Ca, Fe, Na, 
chlorine (Cl) and zinc (Zn), obtaining a nano-fertilizer with a high 
water-retention capacity and prolonged release of nutrients (Khan 
et al., 2021).

Biochar from maize

Maize (Zea mays L.) is an important source of carbohydrates 
for human diets in developing countries and for animal feed in the 
developed world (Ngoune-Tandzi and Mutengwa, 2020). The 
annual productivity of maize at present is 1.1 billion tons, being 
12% of the total world annual crop production (Food and 
Agriculture Organization of the United Nations (FAO), 2021a). 
Maize cultivation worldwide produces mainly husks and straw as 
harvest wastes, which have been historically used as animal feed, 
stable litter, soil amendment, or cellulosic biomass for ethanol 
production (Duque-Acevedo et al., 2020).

Maize harvest residues have been used as raw material to 
obtain biochar with interesting agricultural benefits (Table  1; 
Figure 1). In this sense, the main raw material used to obtain 
biochar from maize residues is straw, varying their processing 
from pyrolysis for 1 h at 350° (Ndiate et al., 2021) to 30 min at 600° 
(Egamberdieva et al., 2021; see Table 1). The amount of biochar 
obtained can change depending on the pyrolysis temperature and 
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the type of thermal treatment used. However, for temperatures 
between 300°C and 684°C, biochar yield is generally 23%–42%, 
while syngas and bio-oil yields are 39%–50% and 25%–36%, 
respectively (Zhu et al., 2015; Chen et al., 2016). As a representative 
example of the actual production of biochar from cereals, in the 
case of maize, the production of plant biomass residues is around 
8 tons per hectare (Bahri et al., 2018). Considering the use of 50% 
of those residues for biochar production, as the return of some 
unprocessed residues is important to maintain the soil organic 
carbon level in the original soil, and also considering that the 
pyrolysis process would reduce about one-third the original 
biomass weight, we  would obtain between 1 and 1.5 tons of 
biochar per hectare of maize. However, as mentioned before, exact 
biochar yield calculations are almost impossible as it depends on 
many parameters, and they should therefore be locally assessed 
considering all the different variables involved.

Interestingly, plant growth promotion could be a consequence 
of bacterial growth in the rhizosphere following the application of 
maize stover biochar. This is due to an increased nutrient 
availability due to the nutritional contribution of the biochar and 
the microhabitats created within its particles (Liu et al., 2017). In 
this sense, maize straw biochar increased the biomass of rice 
plants in the field due to an enhanced number of Fe-reducing 
bacteria and phosphate-solubilizing bacteria in the soil (Xu et al., 
2019). In addition, biochar from maize cob or straw was also 
capable of promoting plant growth in ryegrass fields by increasing 
P and K uptake in plants, without the identified action of 
rhizosphere bacteria (Zhang et al., 2017), or in fields of soybean 
due to increased SOC content (Li et al., 2020). Furthermore, water 
extracts from maize biochar could act as a bio-stimulator at a low 
dosage under hydroponic conditions, as low molecular weight 
organic acids and nanoparticles contained in the biochar can 
promote root growth (Liu M. et al., 2021).

The combined use of maize biochar with microbial inoculants 
can also result in growth benefits for different crops. For example, 
18% increase in lettuce dry biomass was achieved through the 
combined application of biochar from maize seeds and the 
microorganisms Klebsiella sp. (bacteria), Talaromyces calidicanius 
and T. purpureogenus (fungi), due to a direct supply of N, P and 
indole-3-acetic acid (IAA) to the plant by the microorganisms 
(Ma et  al., 2022). Under abiotic stresses, such as drought and 
salinity, the application of biochar from maize has reported 
significant increases in plant tolerance (Table 1). In quinoa plants, 
maize cob biochar increased the plant antioxidant machinery, 
reducing the accumulation of reactive oxygen species (ROS) and 
increasing nutrient uptake under drought and salinity stress 
(Ramzani et al., 2017). However, in licorice plants grown with 
maize biochar in growth chambers, the increase of plant tolerance 
under salt stress was a consequence of an increased soil microbial 
enzymatic activity and nutrient supply to the plant (Egamberdieva 
et al., 2021).

Under biotic stress, the use of maize biochar can also 
improve crop responses (Table 1; Figure 1). In pepper, the 
application of biochar from maize stalk reduced the incidence 

of Phytophthora blight (caused by Phytophthora capsica) by 
up to 50%, due to an increase in the abundance and diversity 
of biocontrol fungi within the genus Aspergillus, Chaetomium 
and Trichoderma. In addition, this biochar also improved soil 
qualities related to plant growth and development by 
increasing soil organic matter and N, P, and K content (Wang 
G. et al., 2020).

The use of biochar from maize residues 
to promote its own growth

As mentioned for other crops, the use of biochar from maize 
harvest residues in maize crops (Table  1; in bold) has a great 
potential for the development of circular economies. In this way, 
the application of biochar from maize straw in the field caused a 
significant increase in the productivity of maize for several years, 
due to increased SOC and improved soil aggregation (Jin et al., 
2020). This enhanced maize productivity could be directly related 
to a promotion of the photosynthetic rate and an increase in the 
N utilization rate and water holding capacity of the soil (Feng 
et al., 2021; Xia et al., 2022). The use of biochar from maize can 
also be a good strategy to increase the tolerance of maize crops 
under abiotic stress. One of the most recent studies showed that 
the application of maize straw biochar under salinity and drought 
conditions increased the biomass of maize plants by more than 
60%, as a consequence of an increase in plant antioxidant activity 
and nutrient supply (Ndiate et al., 2021).

Biochar from barley

Barley (Hordeum vulgare) is one of the most important cereal 
crops in the world. In 2020, the global barley production was 157 
million tons, with 5 million ha cultivated [Food and Agriculture 
Organization of the United Nations (FAO), 2021a]. Europe 
accounts for 61.7% of global barley production [Food and 
Agriculture Organization of the United Nations (FAO), 2021c], 
being the third most cultivated cereal in the continent. Barley is 
primarily used for animal feeding and the brewing industry, with 
a very low percentage used for human food. Barley processing 
generates different by-products derived from processes such as 
pearling, milling, or malting. These by-products (straw, pearling 
by-products, barley middling’s, hulls, fiber, malt sprouts, etc.) are 
mainly used for animal feed or stable litter, ethanol production, 
incorporation in pasta, bread formulations, etc. (Papageorgiou 
and Skendi, 2018).

Barley straw and spent grain are the main by-products 
from which biochar is produced. The amount of biochar 
obtained from these feedstocks depends on the type of 
thermal reaction and parameters used. However, at pyrolysis 
temperatures of 460°C–540°C, biochar yield is around 
15%–22%, while syngas and bio-oil yields are 37%–44% and 
39%–48%, respectively (Sanna et al., 2011). Different studies 
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have shown the potential of barley biochar to improve plant 
growth (Table 1; Figure 1). In this way, application of 10 t ha−1 
of barley straw biochar produced by pyrolysis at 400°C had 
significant positive effects on soil physicochemical properties 
and increased Chinese cabbage yield in a field experiment 
(Kang et al., 2018). In addition, after a combined application 
of biochar + fertilizer, the fresh weight of Chinese cabbage 
was significantly increased by 112% and 28.5% when 
compared to the control and the biochar-only treatments, 
respectively. Similarly, several biometric parameters, such as 
the leaf number, mean width and length of cabbage, as well as 
the N, P and K uptake were also promoted under 
biochar + fertilizer treatments compared to the non-treated 
control and the biochar-only treatment (Kang et al., 2018). In 
a similar study, Kang et  al. (2019) studied the optimal 
conditions for biochar application, which were identified as 
an optimal rate of 20 t ha−1, 14 days before rice planting. The 
results of the biochar application, alone or combined with the 
inorganic fertilizer under those optimal conditions, 
significantly increased the culm lengths of rice, the number 
of grains per panicle, the 1,000 grain weight, and rice yield. 
Yet, the combined application of biochar + fertilizer had 
greater effects on all measured parameters than the single 
application of biochar or a fertilizer alone. There was no 
literature available on the use of biochar from barley residues 
for its own growth (Table 1).

Considering all the data presented in this review, the 
application of biochar shows a general common tendency to 
stimulate plant growth through several mechanisms, such as 
enhancing the soil microbial diversity (thus increasing the 
nutrient-cycling functions in the soil), improving the soil 
physicochemical properties, stimulating mycorrhizal 
colonization, increasing the P, K or N content of the soil, or 
improving the antioxidant defenses of the plant (an advantage 
under salinity, drought or heat stress; Figure 1). However, a deep 
knowledge of the molecular mechanisms or pathways involved 
in plant growth promotion stimulated by biochar is still lacking 
for many crops as rice, wheat, or maize, particularly when 
recycled for their own growth. In this respect, it is important to 
mention that recent data of transcriptomic profiles from tomato 
plants after the application of biochar from greenhouse-grown 
pepper, primarily indicated the upregulation of genes and 
pathways associated with defenses and growth, such as jasmonic 
acid, brassinosteroids, cytokinins, auxins, and flavonoid 
synthesis (Jaiswal et al., 2020). Similarly, pepper plants in soils 
amended with bamboo biochar showed an improvement in plant 
photosynthesis, energy production, enhanced stress signaling 
pathways, as well as plant defenses, among others. These effects 
were tightly coordinated with the differential expression of genes 
and accumulation of metabolites involved in plant–pathogen 
interactions, photosynthesis, phenylpropanoid biosynthesis, and 
protein processing in the endoplasmic reticulum (Zhu et al., 
2021). Future research should contribute to increasing this 
mentioned knowledge in cereal crops.

Conclusion

In conclusion, a total of 67 publications centered on the 
use of biochar from main cereals to stimulate plant growth 
were analyzed, of which 37% were from rice, 33% from wheat, 
27% from maize and 3% from barley (Figure 1A). The main 
raw material used to produce biochar was straw (66% of the 
total number of studies), i.e., 15 publications on rice, 21 on 
wheat, 6 on maize, and 2 on barley. Biochar from these main 
cereals has been primarily used in these studies to stimulate 
the growth of crops other than the ones used for biochar 
production (70% of all studies). Furthermore, rice 
accumulates the largest number of studies focused on the use 
of its residues as biochar to stimulate its own growth (10 out 
of a total of 25 publications), followed by maize and wheat 
(Figure 1). However, generally, biochar has been randomly 
applied to crops other than those used as feedstock for 
biochar production. There is, therefore, a general lack of 
information about the effects of using biochar produced from 
the same crop. Regarding the type of experiments carried out 
(Figure 1B), the majority of them were conducted in the field 
(43%) or greenhouses (39%), a relevant sign of the potential 
extrapolation of these results for their future application in 
established agricultural systems.

Hence, biochar is a precious product that can be used as soil 
amendment with many positive environmental effects such as 
carbon sequestration, reduction of greenhouse gas emissions, soil 
improvement, or plant growth promotion. However, in-depth 
scientific research is still needed in order to be  able to apply 
agricultural cereal residues transformed in biochar locally, which 
would be  compatible with a circular economy. Furthermore, 
research on how biochar produced from cereal crops can be used 
to improve the growth of that same crop is still very scarce (in 
bold, Table 1).
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